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Chromosome-level genome 
assembly and annotation of the 
White-spotted spinefoot Siganus 
canaliculatus
Xiaolin Huang1,2,3,6, Yanke Lu4,6, Hui Zhang4,6, Lin Xian1,2,5,6, Shiting Huang4, Yukai Yang1,2,3, 
Lei Wang4, Dianchang Zhang1,2,3 ✉ & Chao Li   4 ✉

The White-spotted spinefoot S. canaliculatus, is an economically important marine fish in South China 
and featured by possessing poisonous glands in its fin spines. However, the unavailability of the S. 
canaliculatus genome has been a serious obstacle to genetic breeding as well as basic researches such 
as uncovering genomic basis underlying its toxigenic glands. Here, we presented a chromosome-level 
genome assembly coupled with good annotation of S. canaliculatus using multiple omics technologies. 
The assembled genome size was 547.39 Mb, with a contig N50 and scaffold N50 length of 21.41 Mb 
and 21.79 Mb, respectively. Approximately 95.32% (521.76 Mb) of assembled sequences were placed 
into 24 pseudochromosomes with the support of Hi-C contact map. Furthermore, around 16.37% of 
the genome was composed of repetitive elements. The quality of the assembly assessed using BUSCO 
showed that 98.6% of BUSCO genes were identified as complete. 25,323 protein-coding genes were 
predicted after integration of three kinds of evidence, of which 96.96% were functionally annotated in 
at least one of nine protein databases. In sum, the chromosome-level genome assembly and annotation 
provide fundamental resources for genetic breeding and molecular mechanism related studies of S. 
canaliculatus.

Background & Summary
The family Siganidae (also known as rabbitfish), are small and medium-sized marine fish. Rabbitfish inhabit 
nearshore reef areas and are found in the Indo-Pacific from the Red Sea and the coast of eastern Africa through 
the Pacific Ocean as far as Pitcairn Island1. As a group of perciform fishes, rabbitfish only includes one genus, 
namely Siganus Forsskål 1775 and currently 28 species are recognized2. However, natural hybridization are also 
found between both close related species or morphs and distantly related ones within rabbitfish3, making taxon-
omy and phylogenetic studies of this taxa a little difficult and complicated. Rabbitfish are herbivorous and feed 
on benthic algae, consisting of a important community in coral reef ecosystem. Due to this feeding characteris-
tic, they are usually introduced in culture ponds to clean net cages4. In aquaculture, there are several species (e.g., 
S. canaliculatus, S. guttatus and S. fuscescens) that are heavily explored because of their high protein content and 
delicious meat4. In addition, some species in Siganidae are very popular in the Indo-Pacific and Mediterranean 
regions as ornamental fishes due to their gorgeous appearance, such as S. vermicularisi and S. corallinus5. In 
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China, 14 Siganidae species are formally described or recorded with a distribution across South China Sea to 
East China Sea5.

Among these species, the White-spotted spinefoot S. canaliculatus (synonym of S. oramin), is an important 
member for various reasons. First, S. canaliculatus is a common commercial fish in the family Siganidae and 
widely distributed in tropical and subtropical areas of the Indo-Pacific Ocean1. It is especially abundant in the 
wild along the coast of South China. Most of the rabbitfish have beautiful body color and appearance while S. 
canaliculatus has many small oblong yellow spots on the head and side of the body, which are relatively unre-
markable5. Interestingly, its color can change sharply when inspired by external stimulus. As other species in this 
genus, S. canaliculatus is also featured by possessing poisonous glands in its dorsal and pelvic fin spines. The tox-
ins likely originate from its food resource such as algae. However, its muscle is nontoxic and full of unsaturated 
fatty acids as well as minerals and trace elements4. The large gallbladder could be responsible for this special 
phenomenon (equal to 30% of its body length). These above valuable traits have made S. canaliculatus as one of 
the most important marine aquaculture species in the past decades in China costal provinces. For example, in 
Fujian province, more than 1000 tons have been reported for the annual production of this fish5.

Meanwhile, as a saltwater fish, S. canaliculatus has the characteristics as freshwater fish. In general, the ferti-
lized eggs of freshwater fish are heavy and sticky, while the fertilized eggs of marine fish are floating (caused by 
differences between the density of freshwater and seawater). However, as a true marine fish, S. canaliculatus is 
unusual by laying heavy and sticky fertilized eggs6. Moreover, freshwater fish usually have the ability to synthe-
size highly unsaturated fatty acids (HUFAs) while seawater fish generally lack or are poor at this ability. Their 
demands for HUFAs mainly depend on direct food intake, so the diet of seawater fish are highly dependent on 
fish oil. S. canaliculatus is the first seawater fish that has been found to possess the ability to convert linolenic 
acid and linoleic acid into HUFAs7. The elovl gene family was shown to function underlying biosynthesis of 
HUFAs8,9.

Apart from nutrition studies, in recent years, there are many investigations of S. canaliculatus covering divers 
topics. For instance, morphology6, genetic structures10,11, phylogenetics3,12, reproduction13, net cage culture14 as 
well as disease control15. However, our knowledge of S. canaliculatus have still been limited due to lack of genetic 
resources and genomic information. The advancements of third-generation sequencing and high-throughput 
chromatin conformation capture (Hi-C) technologies have provided an unprecedented opportunity for produc-
ing high quality and chromosome-level genomes for various organisms on the earth.

In this study, we employed an integrated strategy of HiFi long reads, Hi-C, Iso-seq and RNA-seq sequencing 
technologies to assemble a high-quality genome of S. canaliculatus. This genome was 547.39 Mb with contig N50 
of 21.41 Mb and scaffold N50 of 21.79 Mb. Approximately 95.32% (521.76 Mb) of assembled sequences were 
placed into 24 pseudochromosomes with the support of Hi-C contact map. 25,323 protein-coding genes were 
predicted and 96.96% were functionally annotated. BUSCOs assessment of the assembly showed 3589 (98.6%) 
BUSCOs was complete. This high-quality S. canaliculatus reference genome will provide an important genomic 
resource for genetic breeding and molecular mechanism related studies.

Methods
Ethics statement.  The fish in our experiments were collected from Shenzhen City, Guangdong Province, 
China. Furthermore, the methods used in this work are strictly in accordance with the Guidelines for the Care 
and Use of Laboratory Animals and approved by Laboratory Animal Ethics Committee of South China Sea 
Fisheries Research Institute, Chinese Academy of Fishery Sciences (permit reference number No. 2024-MRB-00-
001). Fish was collected for experiment utilization only and sacrificed using MS-222 (Sigma).

Sample collection and DNA extraction.  A wild female S.canaliculatus (body mass: 250.2 g) was col-
lected from Da Peng, Shenzhen, Guangdong, China (22°38′32.31″N; 114°24′40.87 E). The muscle was isolated 
and flash-frozen for ~30 minutes. Total DNA was extracted using QIAGEN Genomic DNA extraction kit and 
was used for PacBio sequencing and Hi-C sequencing. The extracted high molecular weight was assessed by 1% 
agarose gel and Qubit 3.0 Fluorometer (Invitrogen, USA).

Library construction and DNA sequencing.  a SMRTbell Express Template Prep Kit 2.0 was used to 
generate a 20 kb long library for PacBio HiFi sequencing. The library was then sequenced on a PacBio Revio 
System (Pacifc Biosciences, Menlo Park, CA, USA). HiFi reads were obtained using the CCS module in SMRT 
Link v9.016. After HiFi reads calling, 25.14 Gb PacBio HiFi reads were generated (N50: 20.47 kb, 45.02× in depth) 
(Table 1).

For Hi-C sequencing, a GrandOmics Hi-C kit with DpnII enzyme (GrandOmics, China) was used to con-
struct libraries following the standard manufacturer’s protocol. The resulted Hi-C libraries were sequenced on 

Library type Library size (bp) Raw data (Gb) Clean data (Gb) Depth (×)† Mean length/N50 (bp)

HiFi 20,000 25.14 — 45.02 16,243/16,338

Hi-C 350 101.66 96.75 173.26 —/149

Iso-seq — 96.30 — — 3,159/3,410

RNA-seq 350 18.14 16.96 30.37 —/149

Table 1.  Sequencing data for Siganus canaliculatus genome assembly. †Estimated by a contig-level assembly 
(genome size: 558.39 Mb).
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a MGISEQ-2000 platform (MGI, BGI Shenzhen, China). 101.66 Gb raw reads were produced. These raw reads 
were filtered by using fastp v0.19.517 to filter low quality reads. 96.75 Gb (173.26 × in depth) clean reads were 
obtained in total. This clean Hi-C data was subsequently used for placing contigs onto psedochromosomes.

RNA extraction and sequencing.  Both RNA-seq and Iso-seq were employed to assist RNA evidence based 
gene prediction. Seven tissues (skin, fin, heart, liver, gill, muscle and gonad) from the same individual as DNA 
extraction were equally mixed and extracted by using a TRIZOL Kit (Invitrogen, Carlsbad, CA, USA) following 
the manufacturer’s instructions. RNA integrity and quality was checked by the Nanodrop 2000 spectrophotome-
ter and the Agilent 2100 Bioanalyzer System (Agilent Technologies, Santa Clara, CA, USA). RNA with RIN (RNA 
integrity number) ≥7.0 were selected for library construction. Procedures described in our previous study18 were 
performed for Iso-seq. Briefly, the extracted RNA was used for cDNA synthesis followed by a large-scale PCR 
amplification step. PCR products were purified and subjected to the construction of SMRTbell template libraries. 
Finally, SMRT cells were sequenced on a PacBio Revio platform. For RNA-seq, cDNA libraries with insert sizes of 
~350 bp were constructed and sequenced on a MGISEQ-2000 platform (MGI, BGI Shenzhen, China). 96.30 Gb 
and 18.14 Gb raw data were generated from Iso-seq and RNA-seq, respectively (Table 1).

Genome assembly and telomere identification.  HiFi reads were first assembled using hifiasm 
v0.19.5-r58719 with default parameters to generate a contig-level assembly which had a size of 558.39 Mb with 
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Fig. 1  Circos plot of Siganus canaliculatus genome. (a) chromosome sizes, (b) gene density, (c) GC density, (d) 
repeat elements abundance, (e) DNA transposons, (f) LTRs, and (g) ncRNAs.
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108 contigs (N50: 21.41 Mb). The mitochondrial sequences were removed in this step. After hifiasm assembly, 
purge_dups v1.2.620 was used to remove haplotigs and contig overlaps based on read depth following the stand-
ard pipeline. AutoHiC v1.3.321 was then used to scaffold these contigs using deep learning-based methods for 
automatic error correction. Briefly, this newly developed software utilizes Hi-C reads and input draft reference 
assembly to generate a candidate assembly. With built-in AutoHiC deep learning models, AutoHiC can auto-
matically correct errors during genome assembly and generate a chromosome-level genome. The resulted draft 
genome was then polished by NextPolish v1.4.122 to fix base errors (SNV/Indel) with HiFi long reads. Telomere 
sequences at ends of each chromosome was identified quarTeT v1.2.523. The size of the final assembly version 
was 547.39 Mb, of which 95.32% (521.76 Mb) were placed onto 24 chromosomes with Hi-C heat map support 
(Figs. 1, 2; Table 4). 70 sequences were presented in the final assembly with N50 length of 21.79 Mb. The length of 
24 chromosome-level sequences ranged from 12.47 Mb to 27.41 Mb. The 24 chromosome numbers suggested by 
the Hi-C heat map was identical with a karyotype study of S. canaliculatus24. Telomere sequences were found to 
be presented at both ends of three chromosomes while only single telomere sequences were identified at one end 
of 20 chromosomes (Table 4).

Repeat elements annotation.  EDTA pipeline25 was used to annotate repeat elements in the S. canalicu-
latus genome. This pipeline was developed for automated whole-genome de-novo TE annotation. It first utilizes 
LTR-FINDER v1.0.626, LTRharvest27, HelitronScanner28 and TIR-Learner29 to predict LTR, TIR and Helitron, 
respectively. Then, LTR_retriever v3.0.330 was used to filter false positive results of LTR. Subsequently, basic and 
advance filter in EDTA were applied to do additional filtering and resulted in raw TE library. This raw library was 
used for RepeatMasker v4.1.2-p131 to mask the target genome followed by RepeatModeler v2.0.332 to predict the 
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Fig. 2  Chromosome heatmaps of Hi-C data of Siganus canaliculatus. The bar beside indicates chromatin 
interactions quantified based on the count of Hi-C reads.
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remaining TE in the genome. The results showed 89,597,434 bp (16.37%) was identified to be repetitive sequences 
(Table 2), in which LTR accounting for 2.58%, TIR 4.19%, nonLTR 0.38%, nonTIR 0.58% and repeat_region 8.1%.

Gene structure prediction and functional annotation.  The masked genome generated in the repeat 
annotation step was used as an input for gene structure prediction. Three approaches which were commonly 
adopted was employed in this study: (1) Ab initio prediction: AUGUSTUS v3.5.033 and GeneMark-ET34 were 
performed to do ab initio prediction; (2) Homology-based prediction: Protein sequences from five representative 
species (Danio rerio, Oreochromis niloticus, Oryzias latipes, Scatophagus argus, Takifugu rubripes) were download 
from the NCBI database. Using these data as references, gene structures in the S. canaliculatus genome were pre-
dicted using blastx v2.2.2635 and exonerate v2.236; (3) Transcriptome-based: for RNA-seq based predictions, raw 
RNA-seq reads were filtered using fastp17 (-a auto --adapter_sequence_r2 auto --dedup --dup_calc_accuracy 3). 
After filtering, 16.96 Gb clean reads were mapped onto the S. canaliculatus genome using HISAT2 v2.2.137 and 
stringtie v2.2.138 and merged with TACO v0.7.339. For Iso-seq based predictions, raw Iso-seq read was processed 
using isoseq pipeline40. GMAP41 was introduced to align cDNA to the S. canaliculatus genome. Finally, gene 
structures predicted from above three methods were integrated by MAKER v3.01.0342. Genes with a Annotation 
Edit Distance (AED) ≤1 were retained in the final dataset.

For functional annotation of predicted genes, protein sequences were extracted from the S. canaliculatus 
genome and blasted against nine commonly used protein databases (NR, Swissprot, KEGG, KOG, GO, Pfam, 
TrEMBL, eggNOG, InterPro) using DIAMOND v0.9.2543 with an E value of 1e−5 and InterProscan v5.59-91.044.

Non-coding RNA (ncRNAs, i.e., tRNAs, rRNAs, miRNAs, snRNAs and snoRNAs) in the S. canalicula-
tus genome were also annotated. We first utilized tRNAscan-SE v1.3.145 to predict tRNAs in the assembly. For 
the rRNA genes, RNAmmer v1.246 was used (-S euk -m lsu,ssu,tsu -gff). MiRNAs, snRNAs and snoRNAs were 
searched by CMSAN v1.1.247 against the Rfam v14.10 database48 (--cut_ga --rfam --nohmmonly --tblout --fmt 2).

For ab initio prediction, AUGUSTUS v3.5.033 and GeneMark-ET34 found 38789 and 38161 genes in the S. 
canaliculatus genome, respectively. Homology-based approach predicted 37191 to 49829 genes depending on 
reference genomes. RNA-seq based evidence predicted 30416 genes while Iso-seq based evidence found 35972 

Class Subclass Repeat size (bp) Percentage of genome

LTR

Copia 64758 0.01%

Gypsy 5121211 0.94%

unknown 8902636 1.63%

TIR

CACTA 17167767 3.14%

Mutator 4966423 0.91%

PIF_Harbinger 384112 0.07%

Tc1_Mariner 364779 0.07%

nonLTR

DIRS_YR 84371 0.02%

LINE_element 1925551 0.35%

Penelope 55820 0.01%

nonTIR

helitron 3151857 0.58%

repeat_region 43821918 8.01%

Total 89597434 16.37%

Table 2.  Statistics of repetitive sequences.

Method Software Species Gene number

Ab initio
Augustus — 38789

GeneMark-ET — 38161

Homology-based blastn/blastx/exonerate

Danio rerio 37191

Oreochromis niloticus 49829

Oryzias latipes 37635

Scatophagus argus 43500

Takifugu rubripes 47202

Transcriptome-based
stringtie/taco (RNA-seq) — 30416

gmap (Iso-seq) — 35972

Integration maker — 25323

Table 3.  Statistics of gene prediction.
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genes (Table 3). After integrated by MAKER v3.01.0342, 25323 protein-coding genes were finally annotated 
with a range from 572 to 1415 genes across each chromosome (Table 4). Functional annotation results showed 
71.45% to 96.68% of proteins can be blasted in one of nine databases (Fig. 3). After removing redundancy, 
96.96% proteins had at least one database hits (Table 5). For ncRNA annotation, 1352 miRNA, 1551 tRNA, 2968 
rRNA, 260 snRNA and 209 snoRNA were predicted in the S. canaliculatus genome (Table 6).

Chromosome Size (Mb) Gap number Telomere number GC% Gene Protein

Chr1 27.41 0 1 42.24% 1036 3193

Chr2 26.58 0 1 42.38% 1415 3818

Chr3 26.14 0 2 43.02% 1274 3297

Chr4 25.91 0 0 42.48% 1273 3532

Chr5 25.02 0 2 42.80% 1289 3543

Chr6 24.02 0 2 42.48% 951 2327

Chr7 23.89 0 1 42.72% 1231 3325

Chr8 23.72 0 1 42.65% 1125 2892

Chr9 23.26 0 1 42.66% 1183 3276

Chr10 23.19 0 1 42.97% 1211 3208

Chr11 22.64 0 1 42.83% 963 2589

Chr12 21.79 0 1 42.72% 929 2618

Chr13 21.47 0 1 42.51% 1025 3053

Chr14 21.27 0 1 42.76% 1213 3391

Chr15 20.86 0 1 43% 990 2534

Chr16 20.67 0 1 43.17% 1303 3405

Chr17 20.55 0 1 42.48% 982 2728

Chr18 20.12 0 1 43.09% 1053 2814

Chr19 19.81 0 1 42.74% 732 2071

Chr20 19.11 0 1 43.18% 966 2448

Chr21 18.37 0 1 43.50% 1028 2798

Chr22 16.95 0 0 42.80% 880 1987

Chr23 16.2 0 1 43.38% 670 1816

Chr24 12.47 0 1 44.77% 572 1461

unplaced 25.63 0 — 40.13% 29 33

Total 547.39 0 — 42.74% 25323 68157

Table 4.  Statistics of gene numbers predicted across each chromosome.

Database Annotated number (Percentage) 300 <  = length < 1000 length >  = 1000

NR 65891 (96.68%) 38368 (56.29%) 11093 (16.28%)

Swissprot 62791 (92.13%) 37411 (54.89%) 10994 (16.13%)

TrEMBL 65902 (96.69%) 38370 (56.30%) 11093 (16.28%)

GO 56342 (82.67%) 33636 (49.35%) 9733 (14.28%)

KEGG 48701 (71.45%) 29793 (43.71%) 8108 (11.90%)

KOG 50701 (74.39%) 30967 (45.43%) 9356 (13.73%)

eggNOG 64612 (94.80%) 38027 (55.79%) 11072 (16.24%)

Pfam 60502 (88.77%) 36312 (53.28%) 10613 (15.57%)

InterPro 63662 (93.40%) 37738 (55.37%) 11016 (16.16%)

Total 66083 (96.96%) 38400 (56.34%) 11096 (16.28%)

Table 5.  Statistics of gene functional annotation.

Type Number

miRNA 1352

tRNA 1551

rRNA 2968

snRNA 260

snoRNA 209

Table 6.  Statistics of non-coding genes.
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Data Records
Raw reads sequenced in this study have been submitted to the National Genomics Data Center (https://ngdc.
cncb.ac.cn/, BioProject number: PRJCA02996149, Run IDs: CRR1288946-CRR1288949). The genome sequences 
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Fig. 3  Upset plot showing protein sequences of Siganus canaliculatus annotated in nine databases. Only the first 
30 intersections have been shown.
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Fig. 4  BUSCO assessment results of Siganus canaliculatus gene and protein sequences.
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and annotation files were deposited at figshare (https://doi.org/10.6084/m9.figshare.2711716950) and NCBI 
(accession number: JBLRWB00000000051).

Technical Validation
The quality of the assembly was assessed using BUSCO v5.5.052 with the actinopterygii_odb10 database (3,640 
BUSCOs). The BUSCO assessment showed that 3589 (98.6%) BUSCOs were identified as complete, of which 
3574 (98.2%) and 15 (0.4%) were single-copy and duplicated, respectively. Chromosome numbers of the S. can-
aliculatus genome were confirmed by the Hi-C heat map (Fig. 2). Completeness assessment of proteins showed 
that a total of 3518 (96.6%) BUSCOs were identified as complete. Of these, 3488 (95.8%) were single-copy and 
30 (0.8%) were duplicated BUSCOs (Fig. 4). Taking all above results and quality assessment metrics together, we 
concluded that the S. canaliculatus genome was high quality and has good annotations.

Code availability
No new scripts or pipelines were developed for this study. Software for raw data quality control, genome assembly 
and annotation, quality assessment have been described in the method part of this paper with parameters 
specified if applicable.
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