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HIFDA - High-Frequency Electrical 
Voltage and Current Signals from 
Household Appliances
Víctor M. Navarro   1 ✉, Marta Barragán1, Rubén Nieto2, Jesús Ureña1 & Álvaro Hernández1 ✉

The increasing demand for efficient energy management in smart grids has led to the development 
of various Non-Intrusive Load Monitoring (NILM) techniques. These aim to disaggregate energy 
consumption and classify appliances using data from a single-point smart meter at a household’s 
grid mains. With the use of machine learning methods, NILM solutions increasingly rely on datasets 
for training and validation. While datasets like WHITED, BLOND, and UK-DALE provide insights into 
consumption patterns, they face limitations such as lack of steady-state data, complicated ground-
truth or low sampling rates, which hinder detecting low-power appliances. High sampling rates, 
however, improve classification accuracy and enable identifying these devices. This study introduces 
the HIgh Frequency household electrical signals DAtaset (HIFDA), a high-frequency dataset capturing 
steady-state signals from 14 household appliances at 100 kSPS, including the empty grid. Data, 
collected via a custom System-on-Chip (SoC) device, focuses on active consumption and includes 
multiple time windows. HIFDA, hosted on Zenodo, ensures its suitability for modern NILM research and 
other applications.

Background & Summary
The growing demand for efficient energy management and monitoring systems, driven by the rise of smart 
grids and intelligent power systems, has encouraged the definition and development of different techniques and 
methods in the last decades. One of them is Non-Intrusive Load Monitoring (NILM), which is intended to dis-
aggregate the energy consumption of individual electrical loads (or appliances) by only analysing the electrical 
signals measured by a single-point smart meter at the entrance of the mains in a household or building1,2. From 
this starting point, NILM techniques have expanded in different topics and fields, such as load classification, 
usage patterns of appliances, prediction of energy consumption, etc. Although the initial and main application of 
NILM techniques has been and is efficient energy management3,4, they have also emerged as a feasible solution 
for non-invasive monitoring of elderly, in order to promote their independent living in their own houses5. In this 
context, NILM allows the detection and assessment of certain daily activities that can be associated to the on/off 
switching of some appliances.

Most previous works in NILM have often focused on detecting and disaggregating those appliances with 
high energy consumption, since they are more interesting from the point of view of energy saving and efficient 
management. Nevertheless, when dealing with applications related to activity monitoring in households, other 
loads with lower energy consumption can become even more relevant. For these appliances with low consump-
tion, a key aspect for NILM performance is the sampling rate of the electrical signals involved. High sampling 
frequencies commonly provide with more information, which allows the capture of unique signatures that may 
differentiate one appliance from another, especially if it is a low-power device such as a laptop or a charger6.

Furthermore, machine learning7,8, and particularly deep neural networks9,10, have become a predominant 
alternative in NILM techniques in recent years, whether they involve classification or regression aspects. These 
alternatives always require a large set of data that supports a feasible training of the algorithm. For that purpose, 
a huge effort has been carried out in the last years to capture, format and make available electrical consumption 
data from different real households and appliances. Due to the primary interest focused on energy management, 
most of these datasets comprise long periods of time at low sampling rates, whereas they sometimes provide the 
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disaggregated consumption of some appliances as well. Nevertheless, it is also possible to find some well-known 
open-access high-frequency datasets for electrical signals, such as WHITED11, BLOND12, UK-DALE13, or 
REDD14, each providing valuable data on electrical consumption.

The WHITED dataset, with a sampling rate of 44.1 kHz, focuses on capturing transient electrical signals 
from over 100 household and industrial devices, making it ideal for detailed signal analysis and appliance dis-
aggregation. Meanwhile, the BLOND-250 dataset, sampled at 50 kHz for individual appliances and 250 kHz 
for aggregate measurements, offers long-term high-resolution data from over 50 household appliances, thus 
enabling comprehensive studies of energy consumption patterns and appliance usage routines across different 
seasons. Its large set, over 1.5 TB, makes it suitable for machine learning applications. The UK-DALE dataset 
provides both high-frequency (16 kHz) voltage and current aggregate data and low-frequency (1/6 Hz) data for 
individual appliances from some UK households, covering up to 54 appliances per home. It is extensively used 
in NILM research for both short-term transient analysis and long-term monitoring. In contrast to UK-dale, the 
REDD dataset, while also offering aggregated and individual current and voltage data, offers higher acquisition 
frequencies on individual appliances (15 kHz) rather than on the aggregate signal (1 Hz). Additionally, its data 
were obtained from houses located in the USA, so their fundamental grid frequency (60 Hz) is different from the 
European one (50 Hz). As can be noticed, these datasets vary in their sampling frequencies and appliance diver-
sity, with WHITED excelling in device variety, and BLOND-250, UK-DALE and REDD providing long-term 
recordings. However, despite their strengths, they also present some drawbacks, such as the lack of steady-state 
data in WHITED, the lack of a straightforward solution for isolating individual appliances using the provided 
ground-truth in BLOND-250, the limited sampling frequency for individual electrical loads in UK-DALE and 
REDD, and the different fundamental frequency of the grid compared to the European one in the case of REDD, 
which could give rise to implementation incompatibility problems.

A further comparison between the main datasets focused on electrical signals sampled at high frequency 
rates is shown in Table 1, where the dataset discussed in this paper has also been included in the last row for 
convenience, as it will be compared with the existing datasets on a later explanation. As can be observed, there 
are notable differences between them, including the diverse sampling frequencies at which the considered appli-
ances are captured. These sampling rates are not the same for the individual signals from each appliance as the 
aggregated signals (one or more simultaneous appliances), commonly sampled at higher frequencies, which 
makes characterizing and classifying the isolated appliances difficult. Another notable difference is the type of 
signal captured, where some datasets contain only the on/off transients of the appliance, whereas others con-
tain a continuous capture of the appliance operation, which also includes its steady state. Table 1 also includes 
a section indicating the region of each dataset: this is a relevant aspect to take into account, since it determines 
the fundamental frequency of the electrical signals. Finally, Table 1 provides their availability for every data set, 
since some are no longer available to be downloaded, which increases the scarcity, already quite prevalent, of 
datasets with high sampling rates.

In this context, this work describes a new dataset for NILM applications containing steady-state elec-
trical signals from individual common household appliances acquired at high sampling rates. A total of 14 
appliances were measured at an acquisition rate of 100 kSPS, capturing the intervals when the target appli-
ance was active and consuming energy (no idle states). Also, the empty grid (no active appliance) was cap-
tured under the same conditions. Data acquisition was performed in a supervised laboratory environment 
by using a custom analog front-end, capable of acquiring electrical signals at up to 500 kHz. It consists of a 
FPGA-based (Field-Programmable Gate Array) System-on-Chip (SoC) architecture, responsible for managing 
two Analog-Digital Converters (ADCs) and the corresponding two Analog Front-Ends (AFEs), one for the volt-
age signal and another for the current one. The main novelty, and motivation for the development of HIFDA15 
(HIgh Frequency household electrical signals DAtaset), is to provide with a suitable and large enough amount 
of samples to enable the proper training of deep neural networks and machine learning solutions that may use 
high-frequency harmonics from the involved electrical signals to identify household appliances, including those 
with low energy consumption. The possibility of working with these appliances implies a significant improve-
ment in those applications dealing with daily activity monitoring and behavior routines recognition, which can 
be tracked more suitably with the identification of these low-power loads.

Dataset Region
Number of 
appliances

Sampling rate for 
aggregate signal

Sampling rate for 
individual appliance Type Available

BLOND-5012 Germany 53 50 kHz 6.4 kHz Continous Yes

BLOND-25012 Germany 53 250 kHz 50 kHz Continous Yes

BLUED23 USA 11 12 kHz — Continous No

COOLL24 France 42 — 100 kHz On/Off Yes

PLAID25 USA 537 — 30 kHz On/Off Yes

REDD14 USA 44 1 Hz 15 kHz Continous No

SustDataED26 Portugal 17 12.8 kHz 0.5 Hz Continous No

UK-DALE13 UK 54 16 kHz 1/6 Hz Continous Yes

WHITED11 Several 110 — 44.1 kHz On/Off Yes

HIFDA15 Spain 14 — 50 kHz Continous Yes

Table 1.  Datasets providing electrical signals sampled at high rates for household appliances.
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Compared to other previous datasets, as can be observed in Table 1, HIFDA provides individual appliance 
data captured at a higher acquisition rate than most of them, the only exceptions being the COOLL (100 kHz) 
and Blond-250 (50 kHz) datasets. However, whereas the acquisition rate of COOLL is twice that of HIFDA, 
the information contained in COOLL is only about the on/off events of the appliance, with no data about the 
steady state, which may be problematic for the accurate recognition of appliances with different operating 
phases. HIFDA contains data of the steady state for each appliance, therefore providing more information about 
their general operation. On the other hand, the Blond-250 dataset presents the same sampling rate as HIFDA, 
although it has a complex ground truth that requires manual supervision in order to fully isolate the information 
related to every appliance. Since the HIFDA data have been captured in a fully supervised manner, it provides 
the end user with a direct and reliable ground truth.

Methods
This Section firstly details the experimental setup developed for measuring the corresponding electrical signals, 
voltage and current, for HIFDA dataset. Furthermore, a detailed description of the appliances involved in the 
measurements is provided.

Experimental Setup.  The system with which data have been captured is based on a Zybo z7-1016 develop-
ment platform. It contains a FPGA, where a SoC architecture has been defined and implemented. It also includes 
two AFEs and two AD7476A17 ADCs, which are combined to acquire the aforementioned voltage and current 
signals. Figure 1 shows the complete acquisition system with all its elements assembled, accompanied by an 
explanatory block diagram of its layout, shown in Fig. 2. As can be observed, the current AFE is connected in 
series between the mains and the appliances, whereas the voltage AFE is connected in parallel to the appliance’s 
socket. Both AFEs divert a low voltage to the ADCs from two Pmod AD1 boards, which are in charge of acquiring 
the corresponding signals. The ADCs are linked to the Zybo Z7-10 platform, so the designed SoC architecture 
manages the converters and uploads the incoming acquired samples towards a computer through an available 
Ethernet link.

The AFEs include transformers and amplifiers to adjust the signals to a manageable range for the ADC (0 to 
3.3 V). In the case of voltage, as can be observed in Fig. 3, a Notch filter is used to remove the 50 Hz component 
(the standard frequency in the European power grid), while allowing the amplification of higher frequency 
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Fig. 1  Complete acquisition system, with all its elements assembled.

Fig. 2  Block diagram of the complete acquisition system layout, each element sharing the same color assigned 
in Figure 1.
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harmonics. The Notch filter is then followed by a MET-59 transformer, another filtering, and an amplification 
stage based on the MTC6242 operational amplifier.

The current AFE, shown in Fig. 4, uses a shunt resistor to generate a small voltage drop through a MET-59 
transformer, which is then filtered by a differential amplifier AD623 to eliminate as much ambient noise as 
possible, and further amplified to adequate the signal to the desired 0 to 3.3 V range, based on an ADA4891 
operational amplifier.

Note that the ADCs can achieve an acquisition rate of up to 1 MSPS, with a 12-bit resolution, thus allowing 
the capture of key details from the electrical signals, including high-frequency harmonics. The use of sepa-
rate conditioning circuits and ADCs for voltage and current helps minimize noise and increase system safety. 
The data acquired by the AD7476A ADCs are sent to the SoC architecture via the Serial Peripheral Interface 
(SPI) communication protocol. Although the ADCs are capable of achieving acquisition rates of up to 1 MSPS, 
the system was set up at 100 kSPS, as a trade-off in this application between the high-frequency information 
acquired and the amount of data samples to be handled. Consequently, the proposed acquisition system is thus 
able to capture the voltage signals with a final bandwidth ranging from 300 Hz to 50 kHz, and the current signals 
with a final bandwidth from 30 Hz to 50 kHz.

In regard to the SoC architecture shown in Fig. 5, initially, when the SoC is booting up, the ADC SPI con-
troller is configured by means of an Advanced eXtensible Interface (AXI)4-Lite bus from the Advanced RISC 
Machine (ARM) processor, by writing the desired sampling rate (in kHz) on the internal registers of the AXI 
peripheral. The Direct Memory Access (DMA) is also configured via the AXI bus, defining the Double Data Rate 
(DDR) memory base address where the incoming samples will be stored. Since the proposal actually has two 
independent ADCs, two different base addresses have been defined: one for each ADC, making sure to leave 
enough memory space for the correct data storage. Once both modules are configured, the data acquisition 
process can begin.

Fig. 3  Electrical scheme of the AFE dedicated to the acquisition of voltage signals.

Fig. 4  Electrical scheme of the AFE used for the acquisition of current signals.

Fig. 5  Hardware block diagram including the Soc architecture.
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The data acquired by each ADC is received through the SPI link and processed by a low-level specific periph-
eral implemented in the FPGA. The 12-bit samples coming from each ADC channel are managed and temporar-
ily stored by the ADC SPI controller, which extends the sign to provide two 16-bit data streams. These data are 
then stored in a FIFO memory with a datawidth of 32 bits: the 16 most significant bits correspond to the second 
channel in the ADC, whereas the 16 least significant bits are for the first channel. Whether the DMA is ready 
for data transfer, the samples gathered in the FIFO are sent using an AXI-Stream bus to the DDR memory for 
storage. The ARM processor then reads that information and processes it independently, by separating the data 
corresponding to each channel, and normalizing and converting each signal into the reference voltage range of 0 
to 3.3 V, as described in (1). Further information about the involved SoC architecture can be found in a previous 
work18.
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 Where xsc is the resulting scaled sample; Vref = 3.3 V is the reference voltage; xadc is the acquired sample; and 
Nbits = 12 is the number of resolution bits. This process ensures that the acquired signals agree with the input 
voltage span in the acquisition, and, therefore, they are ready for the following processing dedicated to load 
identification and consumption analysis algorithms.

The acquired samples are uploaded through an Ethernet link available in the SoC architecture to a com-
puter, where the incoming data are received and stored in files with a text format (.txt), using Matlab®19. For the 

Appliance Brand Model Power (W) Main load type

Air conditioner Cecotec ForceClima 9050 1010 Reactive

Charger — HNHB050300E5 120 Switched-source

Coffee maker Mandine MCM85225R-16 1000 Resistive

Computer Tacens RADIX III 720 720 Switched-source

Griddle Solac PA5255 2200 Resistive

Hair dryer Philips TYPE HP8251 2300 Resistive

Heater Haverland ST-1 2000 Resistive

Iron Taurus Artica 2800 zaffiro 
(ver 2) 2800 Resistive

Laptop Toshiba Satellite U200-141 360 Switched-source

Light OSRAM L22W/21-840 C G10Q 22 Resistive

Microwave LG MS1929G 800 Reactive

Monitor LG Flatron W2242T 240 Switched-source

Vacuum Bosch Series 2 700 Reactive

Washing machine LG F2WR5S09A0W 2200 Reactive — Resistive

Empty grid — — 0 —

Table 2.  Description of the electrical appliances involved in the creation of the HIFDA dataset.

Appliance

No. of files for current No. of files for voltage

Format10.24 ms 163.84 ms 1310.72 ms
Full time 
(aprox 5.4 s) 10.24 ms 163.84 ms 1310.72 ms

Full time 
(aprox 5.4 s)

Air conditioner 23916 1520 200 50 23916 1520 200 50 .txt

Charger 23916 1520 200 50 23916 1520 200 50 .txt

Coffee maker 23916 1520 200 50 23916 1520 200 50 .txt

Computer 23916 1520 200 50 23916 1520 200 50 .txt

Empty grid 23916 1520 200 50 23916 1520 200 50 .txt

Griddle 23916 1520 200 50 23916 1520 200 50 .txt

Hair dryer 23916 1520 200 50 23916 1520 200 50 .txt

Heater 23916 1520 200 50 23916 1520 200 50 .txt

Iron 23916 1520 200 50 23916 1520 200 50 .txt

Laptop 23916 1520 200 50 23916 1520 200 50 .txt

Light 23916 1520 200 50 23916 1520 200 50 .txt

Microwave 23916 1520 200 50 23916 1520 200 50 .txt

Monitor 23916 1520 200 50 23916 1520 200 50 .txt

Vacuum 23916 1520 200 50 23916 1520 200 50 .txt

Washing machine 23916 1520 200 50 23916 1520 200 50 .txt

Table 3.  Disposition of the HIFDA dataset files.
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creation of this dataset, 50 windows of the voltage and current signals were taken for fourteen isolated devices, 
described in Table 2, as well as for the empty electrical grid. Each window contains approximately 540, 000 sam-
ples acquired at 100 kSPS. This implies that the acquired windows have a length of 5.4 seconds. The appliances 
selected for the creation of this dataset correspond to examples with different electrical behavior, thus contain-
ing resistive loads, reactive ones, and switched source loads. They also present different power consumptions, 
involving appliances with consumptions ranging from 22 W to 2.8 kW. Low-power devices are particularly 
interesting, since the characteristics of their electrical signals are not easily distinguishable at low sampling rates 
(note that these appliances are not commonly considered in other previous datasets).

For convenience, the acquired windows have been split in order to create three additional datasets, con-
taining time slots of 10.24 ms, 163.84 ms and 1310.72 ms. These lengths may be considered in the training of 
different neural network topologies and architectures. The size of these windows has been set so that the number 
of data contained in each window is a power-of-two length, since this facilitates the processing tasks for many 
algorithms based on the Fast Fourier Transform or the Wavelet Transform, reducing their computational cost. 
At the same time, it is pursued to create windows containing time slots with a length of at least 10 ms, 100 ms 
and 1000 ms at 100 kSPS, respectively. In any case, the user is free to extract windows of any desired size from 
the global information contained within the frames.

Additionally, in order to increase the possible utility of this dataset, a general characterization of the data has 
been made, which allows the conversion of the samples into its corresponding physical values. On the one hand, 
for the current signal, the obtained waveform data have been compared with the samples obtained in parallel 
with a Yokogawa 9600120 commercial clamp ammeter. This was used to estimate a scaling factor for the acquired 
signals, which was used to experimentally fit the conversion from the acquired value xsc into the measured cur-
rent Imeas (2).

= − . ∗ .I x( 1 6462) 12 55 (A) (2)meas sc

On the other hand, for the voltage signal, the input voltage signal is acquired, not only by the proposed setup, 
but also by a Tektronix MSO5204B21 commercial oscilloscope. Since a 50 Hz Notch filter in the proposed setup 

Fig. 6  Comparison between the current signals from a hair dryer acquired by the designed AFE (lower plots) 
and those obtained by a commercial current clamp (upper plots).
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7Scientific Data |          (2025) 12:527  | https://doi.org/10.1038/s41597-025-04859-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

is in charge of filtering out the main frequency component, both signal cannot be compared directly. Instead, the 
Fast Fourier Transform is implemented to estimate the scaling factor for those frequency components existing 
in both acquired signals. In this way, it is also possible to experimentally adjust the conversion from the acquired 
sample xsc into the measured physical voltage Vmeas in Volts (3).

V x( 1 5992) 33 64 (V) (3)meas sc= − . ∗ .

Data Records
The HIFDA15 dataset is available at Zenodo as a compressed ZIP file within an open-access repository (https://
doi.org/10.5281/zenodo.13884627). It contains five main folders. One of this folders, “0.Img_Appliances”, pro-
vides with pictures of the fourteen appliances whose electrical signals have been captured to create this dataset. 
The rest of the folders correspond to the different window divisions described before. Inside every one of them, 
there is a “Current” folder and a “Voltage” one, where it is possible to find a subfolder for every appliance under 
analysis. This subfolder contains the associated data in multiple text files (.txt). The total number of files and 
their disposition can be observed in Table 3. It is worth noting that, even though the number of available files 
is higher for the smaller window configurations, the information in all these window length configurations is 
mostly the same, as all of them come from the full-time recordings. It is important to keep in mind that the 
bandwidth of the captured voltage signal ranges from 300 Hz to 50 kHz, so the fundamental component of the 
grid, located at 50 Hz, does not appear on the acquired samples. Meanwhile, the captured current signal has a 
bandwidth ranging from 30 Hz to 50 kHz, approximately, thus including the fundamental component.

Inside the ZIP file there is also a “Readme.txt” file that contains general information about the dataset and 
how to use it, including information about the bandwidth for every signal, the initial 0 V to 3.3 V scaling and the 
corresponding conversions to physical voltages and currents.

Fig. 7  Examples of voltage signals from the HIFDA dataset for a laptop and a heater, together with their 
corresponding frequency spectrum.
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Technical Validation
In order to verify the technical quality and practical utility of the generated HIFDA dataset, a characterization 
of the AFE modules was carried out, where their Bode diagrams were calculated to validate that the obtained 
bandwidths correspond to the desired ones. This has been implemented using a signal generator and an oscillo-
scope, by inserting a sine signal in both AFEs and observing the amplitude of the output signal, with the shunt 
resistor removed in the case of the current AFE so as not to cause a short circuit. For more information, refer to 
previous work18.

Furthermore, as a method of verifying the waveform of the current signal, a comparison has been made 
between the current signals of several household appliances captured simultaneously with the developed system 
and those captured by means of a commercial current clamp. As an example, the results for a hair dryer are 
shown in Fig. 6, where a decimation of the data captured by the developed system was necessary to resample the 
data at 20 kSPS, since this is the upper limit for the bandwidth of the current clamp. In addition, both signals 

Fig. 8  Examples of current signals from the HIFDA dataset for a laptop and a heater, together with their 
corresponding frequency spectrum.

Fig. 9  Examples of the 64 × 64 images used to train the CNN, generated from the current signals of different 
appliances.
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were normalized in order to establish a fair comparison. The signal obtained by the current AFE is cleaner than 
that provided by the current clamp, mainly due to its differential configuration, implemented to reduce ambient 
noise in the developed current AFE, which is not present in the commercial current clamp.

Other examples coming from the HIFDA dataset are depicted in Fig. 7 and Figure 8, where voltage and 
current signals for a laptop and a heater, along with their corresponding spectrum, are represented. As can be 
observed in Fig. 7, in the voltage captured from both appliances, the fundamental frequency at 50 Hz is clearly 
reduced by the applied Notch filter, whereas the signals around 35 kHz are more prevalent in the laptop due 
to the its switched-source nature, which inserts high-frequency harmonics in the grid. Furthermore, as Fig. 8 
shows, the heater current signal waveform has a clean sine shape due to its mainly resistive behavior, whereas the 
laptop current signal waveform, due to its switched-mode source, contains peaks every half period accompanied 
by high-frequency noise around the 35 kHz range.

Since this dataset is intended to be used as a training set for deep neural networks and, in general, for 
machine learning algorithms applied to load identification purposes in the domain of NILM techniques, a val-
idation has been carried out by training a Convolutional Neural Network (CNN), based on a model described 
in a previous work10. For clarity’s sake, only 100 current captures for every household appliance were considered 
from the HIFDA dataset. A window of 4096 samples from every selected current captures is used to create the 
64 × 64 input images that are provided to the convolutional neural network. These images are normalized from 
the 0 V to 3.3 V range to the 0 to 255 range, according to (4), and converted into the 64 × 64 images where nor-
malised samples xn are arranged in successive columns, xsc being the original data.

x x255
3 3 (4)n sc=
.

∗

The training of the aforementioned CNN has been carried out, based on these 64 × 64 input images, thus 
containing a set of 100 images for each one of the 14 appliances, including also the empty grid. Figure 9 shows 
some examples of the images generated from the current signals of different appliances, where it is possible to 
distinguish the visual differences that may be used by the CNN to identify the different electrical loads.

The architecture of the CNN used in this test to classify the involved appliances is shown in Fig. 10, where is it 
possible to observe the internal structure and the purpose of each layer in the model. As has been already men-
tioned, the neural network input is a 64 × 64 grayscale image, followed by a 2D convolutional layer with a kernel 
size of 3 × 3, activated with the ReLU (Rectified Linear Unit) function. Afterwards, there is a max pooling layer 
with a window size of 2 × 2. This same structure is repeated two successive times. Finally, the model contains a 
flatten layer, a fully connected layer with 128 neurons, activated by ReLU, and a last dense layer with 15 neurons, 
that uses a SoftMax activation function to classify the fifteen classes corresponding to the 14 appliances and the 
empty grid from the HIFDA dataset.

Finally, the classification results of this test are shown in Table 4, which have been cross validated with 10 
different training iterations. All of them have been carried out with a distribution of 70 percent of the generated 
input images for training, 20 percent for validation, and 10 percent for testing. It is worth noting that those appli-
ances that have a higher rate of confusion among them are those with a resistive behavior and similar power, 
such as the griddle (2200 W), the hair dryer (2300 W) and the heater (2000 W). Otherwise, this is not the case 
of the iron (2800 W) or the coffee maker (1000 W) since, although they have a resistive load, they also feature a 
significant difference in power consumption. In the case of the loads with low energy consumption, such as the 
charger (120 W), the light (22 W), the monitor (240 W), and the laptop (360 W), the contrast is so low in the 
corresponding generated images that their signals are confused, even with the empty grid. In addition, it is com-
mon for those appliances with low energy consumption to be confused with those with similar switched-source 

Fig. 10  Block diagram of the CNN architecture proposed for the validation of the HIFDA dataset in the 
appliance identification.

https://doi.org/10.1038/s41597-025-04859-3


1 0Scientific Data |          (2025) 12:527  | https://doi.org/10.1038/s41597-025-04859-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

behavior, since they would have a similar shape on the generated images fed into the neural network, this being 
the case of the computer, laptop, monitor, and charger. As for the air conditioner (1010 W), the vacuum (720 W) 
and the coffee maker (1000 W), their power consumptions are similar and, even though their type of load may 
be different, as this CNN uses only the current signal, the difference between a resistive and a reactive signal is 
minimal, since the signal phase shift cannot be obtained without the use of voltage. All of these are common 
issues in most NILM techniques, and a challenge still open to research on, supported by datasets such as HIFDA.

Usage Notes
The HIFDA dataset can be reused by unzipping the uploaded ZIP file and importing the data using any software 
package or environment capable of dealing with text files (.txt), such as Matlab®, Python22, or any other pack-
ages and/or frameworks. Depending on the particular purpose for which this dataset is to be applied, data may 
be used unaltered or the suggested scaling might be considered to transform the available values into physical 
signals.

Code availability
No custom code is needed.
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