Table 3 Performance comparison of representative forecasting methods on the spatial-temporal occupancy prediction task using the UrbanEV dataset. The result showcases that models incorporating both spatial and temporal patterns can achieve superior predictive accuracy. This observation suggests that the UrbanEV dataset exhibits pronounced spatiotemporal dependencies within EV charging data.

From: UrbanEV: An Open Benchmark Dataset for Urban Electric Vehicle Charging Demand Prediction

Model

RMSE(×10−2)

MAPE(%)

3h

6h

9h

12h

Average

3h

6h

9h

12h

Average

LO

9.75

12.52

14.65

15.45

13.09

25.39

39.07

50.92

56.70

43.02

AR

13.08

13.00

12.89

12.67

12.91

58.30

59.12

60.93

61.74

60.02

ARIMA

13.76

13.88

13.44

12.79

13.47

58.63

58.89

59.56

59.10

59.05

FCNN

9.47

10.74

10.95

9.79

10.24

40.59

50.12

52.67

46.22

47.40

LSTM

9.37

10.96

11.05

9.74

10.28

36.17

46.44

49.81

43.54

43.99

GCN

8.91

10.63

10.93

10.08

10.14

39.93

50.32

51.76

46.92

47.23

GCNLSTM

8.41

9.67

10.65

9.39

9.53

35.96

45.01

50.12

43.26

43.59

ASTGCN

9.15

10.61

10.92

9.83

10.13

35.67

46.02

49.37

47.52

44.64

TimesNet

9.00

9.59

9.92

9.64

9.54

31.65

35.19

37.58

36.37

35.20

TimeXer

8.32

9.38

9.89

9.39

9.24

26.13

33.20

36.47

35.14

32.74

Model

RAE( × 10−2)

MAE( × 10−2)

3h

6h

9h

12h

Average

3h

6h

9h

12h

Average

LO

36.62

54.05

68.08

74.05

58.20

4.91

7.26

9.17

9.98

7.83

AR

67.54

67.07

66.66

65.65

66.73

8.99

8.98

8.96

8.83

8.94

ARIMA

70.82

70.90

69.21

65.78

69.18

9.46

9.52

9.31

8.84

9.28

FCNN

45.62

54.62

56.02

49.08

51.34

6.11

7.33

7.54

6.62

6.90

LSTM

43.51

54.57

55.85

48.27

50.55

5.82

7.32

7.52

6.50

6.79

GCN

45.61

55.69

57.34

52.64

52.82

6.11

7.48

7.73

7.11

7.11

GCNLSTM

41.79

50.13

55.86

48.12

48.97

5.59

6.73

7.52

6.48

6.58

ASTGCN

42.70

52.90

55.32

49.91

50.21

5.71

7.10

7.45

6.73

6.75

TimesNet

40.78

45.05

47.28

45.86

44.74

5.48

6.03

6.31

6.12

5.99

TimeXer

35.01

42.24

46.43

44.12

41.95

4.71

5.66

6.20

5.89

5.61

  1. The best and second best results in each column are marked by Bold and underlined, respectively.