Table 4 Performance comparison of six representative forecasting methods in node prediction. It is evident that the Transformer-based model, TimeXer, and the RNN-based model, LSTM, stand out with superior performance. This observation indicates that the charging data offered by UrbanEV encompasses ample temporal features.

From: UrbanEV: An Open Benchmark Dataset for Urban Electric Vehicle Charging Demand Prediction

Model

RMSE

MAPE

o

d

v

o

d

v

LO

0.10

4.35

68.53

0.41

0.57

0.58

AR

0.08

5.60

74.29

0.11

0.89

0.88

ARIMA

0.13

5.86

76.41

0.59

0.89

0.89

FCNN

0.11

3.62

55.52

0.54

0.56

0.57

LSTM

0.09

3.20

45.14

0.46

0.52

0.52

TimeXer

0.07

2.73

43.66

0.29

0.55

0.66

Model

RAE

MAE

o

d

v

o

d

v

LO

0.79

0.78

0.78

0.07

3.17

51.71

AR

1.06

1.07

1.07

0.07

4.51

59.18

ARIMA

1.10

1.09

1.09

0.10

4.67

63.81

FCNN

1.05

0.78

0.79

0.09

2.89

44.44

LSTM

0.92

0.72

0.71

0.07

2.48

34.12

TimeXer

0.76

0.70

0.71

0.05

2.04

33.81

  1. The best and second best results in each column are marked by Bold and underlined, respectively.