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PathoGraph: A Graph-Based 
Method for Standardized 
Representation of Pathology 
Knowledge
Peiliang Lou   1,5, Yuxin Dong1, Caixia Ding2, Chunbao Wang3, Ruifeng Guo   4, XiaoBo Pang1, 
Chen Wang   5 ✉ & Chen Li6 ✉

Pathology data, primarily consisting of slides and diagnostic reports, inherently contain knowledge 
that is pivotal for advancing data-driven biomedical research and clinical practice. However, the 
hidden and fragmented nature of this knowledge across various data modalities not only hinders its 
computational utilization, but also impedes the effective integration of AI technologies within the 
domain of pathology. To systematically organize pathology knowledge for its computational use, we 
propose PathoGraph, a knowledge representation method that describes pathology knowledge in a 
graph-based format. PathoGraph can represent: (1) pathological entities’ types and morphological 
features; (2) the composition, spatial arrangements, and dynamic behaviors associated with 
pathological phenotypes; and (3) the differential diagnostic approaches used by pathologists. By 
applying PathoGraph to neoplastic diseases, we illustrate its ability to comprehensively and structurally 
capture multi-scale disease characteristics alongside pathologists’ expertise. Furthermore, we validate 
its computational utility by demonstrating the feasibility of large-scale automated PathoGraph 
construction, showing performance improvements in downstream deep learning tasks, and presenting 
two illustrative use cases that highlight its clinical potential. We believe PathoGraph opens new avenues 
for AI-driven advances in the field of pathology.

Introduction
The field of pathology has yielded vast data resources, which contain meaningful knowledge for biomedical 
research and clinical practice. Driven by Artificial Intelligence (AI), frontier research and applications related to 
pathology emerge, including computational oncology1, deep phenotyping2,3, and automatic pathological diag-
nosis4 etc. These advanced directions rely on computational use of pathology knowledge within multi-modal 
pathology data. However, pathology knowledge is disorganized, fragmented and hidden among images and 
texts. Developing a formalized and standardized way to represent pathology knowledge, making it accessible to 
computational use, could largely improve the application of AI in pathology.

Pathology knowledge refers to information about pathological changes related to diseases, including the 
composition of diseased tissues, their pathological characteristics and relationships at the protein, cellular, and 
tissue levels etc. It also encompasses diagnostic expertise of pathologists regarding these changes. Pathology 
knowledge is contained in pathology data of different modalities. Table 1 outlines three widely-applied data 
modalities and summarizes the pathology knowledge they contain. Figure 1 further elucidates the knowledge 
described in Table 1 by providing several examples. Pathology knowledge contained in pathology data is of great 
value in addressing challenges in biomedical research and clinical practice by using data-driven approaches. 
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Recently, the computational use of pathology knowledge based on deep learning techniques has generated novel 
insights related to cancer and facilitated automated pathologist-like diagnostic process5.

However, pathology knowledge is hidden within both textual data and images, which is not conducive to 
its computational utilization. Taking a pathological slide as an example, although it provides detailed insights 
into the pathological aspects of a tissue sample, as Fig. 1a shows, such information is embedded within the pix-
els, which requires expert interpretation to be fully apparent and amenable to analysis. As for the textual data, 
words and sentences can be obscure when describing pathological concepts or phenomena. For example, malig-
nant cells are usually described as “atypical” in biomedical literatures, while only professionals understand what 
qualities “atypical” refers to. As a result, computational methods may struggle to fully understand and analyze 
pathology data, as pathology knowledge is implicitly captured in the data modalities, making it less accessible 
for computational analysis.

Additionally, pathology knowledge is fragmented across data modalities, which also impedes its compu-
tational utilization. For instance, Fig. 1c illustrates the key aspects of a pathologist’s diagnostic process, which 
involves not only the identification and evaluation of microscopic findings from pathology slides, but also the 
differential diagnosis that correlates these findings with diagnostic possibilities, and narrows down these pos-
sibilities to confirm the final one. However, the evidential phenotypes and the diagnostic insights that a pathol-
ogist derives are fragmented across various data sources. Figure 2 depicts how the elements of the diagnostic 
process, as outlined in Fig. 1c, are scattered as incomplete and disconnected pieces across different datasets. The 
fragmented nature of pathology knowledge hinders its suitability for computational analysis, thereby preventing 
AI methods from fully leveraging the expertise encapsulated in pathology data.

To facilitate AI-based pathology practice, it requires a formalized representation of pathology knowledge 
hidden within and fragmented across pathology data, making it more accessible, organized and usable for com-
putational analysis. In this paper, we propose a method for representing pathology knowledge in a graph struc-
ture, namely PathoGraph. Specifically, PathoGraph defines three graphs, each representing different aspects: 1) 
the types and morphological characteristics of pathological entities across biological scales; 2) the components 
of pathological phenotypes as well as their spatial arrangement and dynamic behaviors; 3) the evaluation and 
differential diagnostic processes of pathologists for patients. Furthermore, to provide a standardized format for 
PathoGraph in line with FAIR principles6, we develop PathoGraph into a markup language called PathoML. We 
illustrate PathoGraph’s utility by applying it to represent pathology knowledge in neoplastic diseases, and we 
evaluate how PathoGraph enhances the computational use of pathology knowledge through a series of tech-
nical validations, including (1) feasibility of large-scale automated PathoGraph construction, (2) performance 
improvements in AI models, and (3) potential clinical applications. Collectively, we believe our efforts lay a crit-
ical foundation for constructing pathology knowledge graphs, thereby advancing AI-driven pathology practice.

Results
Overview of PathoGraph.  PathoGraph represents pathology knowledge contained in multimodal pathol-
ogy data in the form of a graph G = (V , E). A graph representation of information consists of a set of nodes V  
connected by a set of edges E , where each node describes a real-world entity and each edge describes a relation-
ship between them; together, nodes and edges represent the meaning of the information.

PathoGraph focuses on pathology knowledge contained in HE slides, IHC slides, and pathology reports, 
which are three of the most widely applied and abundant information resources in the field of pathology. These 
modalities contain not only multi-scaled characteristics related to diseases, but also the diagnostic expertise of 
pathologists, which constitute the core content of pathology knowledge, as demonstrated by Table 1 and Fig. 1. 
To effectively represent such knowledge information, PathoGraph defines three graphs: (1) Pathology Entity 
Graph, which maps out the basic entities in pathology; (2) Pathology Phenotype Graph, illustrating various 
pathological phenotypes; and (3) Pathology Diagnosis Graph, depicting diagnostic processes of pathologists. 
In order to link together different contexts of a disease, these graphs are organized into three layers, with asso-
ciations across these layers. For example, a cell’s characteristics represented in the Pathology Entity Graph 

Pathology Data Pathology Knowledge Contained

Hematoxylin and Eosin-stained Slide (a pathological 
slide created by staining cells and tissues in a diseased 
tissue with Hematoxylin and Eosin dyes)

Composition of diseased tissue: Residual normal tissues and cells either surrounding or interspersed 
within diseased tissues, along with diseased cells and their intracellular components, as well as chemical 
substances produced or stored by diseased cells, among others.

Histopathological Phenotype: The characteristics of diseased tissues at the tissue level, including 
the growth patterns and biological behaviors (such as compression, invasion, and infiltration towards 
normal tissue), and the spatial arrangement patterns of diseased cell populations (such as acinar 
arrangement, papillary arrangement, etc.).

Cytopathological Phenotype: The characteristics of diseased tissues at the cellular level, including 
changes in morphology and distribution location of diseased cell as well as its components (such as 
irregular nuclear shapes, alterations in cell size, etc.).

Immunohistochemistry Slide (a pathological slide 
created by staining antigens in a diseased tissue with 
one or more antibodies)

Immunophenotype: The characteristics of diseased tissues at the protein level, including changes in the 
types of proteins carried by diseased cells, alterations in proteins’ distribution locations within diseased 
cells, and variations in their quantity.

Pathology Report (a report recording the diagnosis 
process and results of a pathologist on a diseased tissue)

Pathological Diagnostic Approach: This refers to the systematic thought process of pathologists, 
which involves analyzing phenotypic characteristics, using phenotypes as a basis for diagnosis, and 
considering and excluding multiple diagnostic possibilities to ultimately arrive at the definitive 
diagnostic conclusion.

Table 1.  Pathology Knowledge Contained in Three Widely-applied Pathology Data Modalities.
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Fig. 1  Pathology knowledge contained in different modalities of pathology data. (a) The compositions of the 
diseased tissue and phenotypes in a thyroid carcinoma hematoxylin and eosin-stained (HE) slide, reflecting 
the characteristics of the disease at the tissue and cellular level. (b) Two lymphoma immunohistochemistry 
(IHC) slides stained for the antigens of CD20 and OCT2, respectively. The brown areas in the slides are the 
stained antigens, where CD20 are stained in the tumor cell membranes (i.e. CD20 resides in the membranes) 
and OCT2 are stained in the nuclei. The normal cells, which do not stain for these antigens, appear blue. The 
immunophenotypes of CD20 and OCT2 reflect the characteristics of the disease at the protein level. (c) The 
schematic representation of a pathologist's diagnostic process to subtype a patient with lymphoma obtained 
from a pathology report. Firstly, the phenotypes in the HE slide lead to an initial diagnosis that this tumor is 
a lymphoma. Secondly, the pathologist considers three possible subtypes of lymphoma aligning with these 
phenotypes. To differentiate these diagnostic possibilities, additional IHC results are introduced, such as CD3, 
CD5, etc. The IHC results support large B-cell lymphoma and contradict the other subtypes, leading to its 
establishment as the final diagnosis.
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(one layer) could be associated with its manifestation in the Pathology Phenotype Graph (another layer), illus-
trating how individual cellular features contribute to the overall pathological phenotype.

In the following sections, we introduce the three graphs respectively by illustrating their nodes and rela-
tionships, and providing their formal definitions. To ensure precision and clarity in our description, we will 
employ the notations and formulations of graph theory throughout the paper. Furthermore, we introduce 
PathoML, which is an OWL-based mark-up language for storing and exchange of PathoGraph representations.

Pathology entity graph.  Pathology Entity Graph consists of three types of nodes: pathological entity, 
pathological feature, and quantitative parameter, as well as their relationships.

Pathological entities refer to biological structures that constitute diseased tissues, which can be observed 
microscopically on pathological slides. Pathological entities encompass both diseased structures and, in certain 
cases, the remaining normal biological components. These entities span multiple biological scales, including 
molecules, cells, and tissues. There exists a hierarchical composition relationship among different pathological 
entities. For example, cells are components of a tissue, and a cell is composed of cell membranes, cytoplasm, and 
nuclei, which are further made up of molecules. Supplementary Table 1 provides three examples of pathological 
entities and their hierarchical component structures.

Pathological features refer to characteristics of pathological entities that could change as diseases progress, 
including both morphological and functional traits. For example, diseased cells and normal cells differ in their 
shape and size. In addition, cancer cells show differences in cytoplasmic acid-base affinity and proliferative activ-
ity based on their level of malignancy. Supplementary Table 2 enumerates various pathological features of tumor 
cells and their components, which often undergo changes as the tumor progresses.

Quantitative parameters refer to measurable quantities that can quantitatively assess the extent of changes 
in pathological features. Compared to using descriptive terms such as “significantly enlarged” “pronounced” 
or “minimal”, quantitative parameters can describe the changes in a pathological feature more objectively. For 
example, a cell nucleus, which is normally round in shape, undergoes irregular shape changes in a diseased state. 
These changes can be quantified and correlated with morphological parameters such as shape factor and round-
ness, which are obtainable from pathological slides using morphometric techniques. Supplementary Table 3 lists 
some examples of quantitative parameters.

Based on these three fundamental elements, the definition of Pathology Entity Graph is provided as follows:
Definition 1 Pathology Entity Graph: For a pathological entity a A∈ , its graph representation is denoted as 

∪ ∪ ∪ ∪ ∪= a E C Q R R R({ } , )a a a a ee ec cqG , where

•	 = …E e e e{ , , , }a N1 2  indicates the entity’s components;
•	 C c c c{ , , , }a K1 2= …  indicates the pathological features of this entity and its components;
•	 = …Q q q q{ , , , }a T1 2  indicates a group of quantitative parameters;
•	 ∪⊆ ×R a E E({ } )ee a a indicates the part-whole relationships between the entity and its components, as well 

as the relationships among the components themselves;
•	 R a E C({ } )ec a a∪⊆ ×  indicates the corresponding relationships between the pathological features and both 

the entity and its individual components, signifying that these features are inherent to the entity or to its 
components;

•	 ⊆ ×R C Qcq a a indicates the corresponding relationships between the pathological features and the quantita-
tive parameters, signifying that these parameters quantitatively characterize the pathological features.

A schematic overview of aG  is provided in Supplementary Figure 1a.

Fig. 2  The schematic representation of the fragmentation of pathology knowledge across various pathology 
data modalities, with the diagnostic process depicted in Fig. 1c as an example.
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Pathology phenotype graph.  Pathological phenotypes refer to specific changes that can be used 
to distinguish different pathological conditions and reflect the underlying nature of diseases. Pathological 
phenotypes are traditionally classified into histopathological phenotypes, cytopathological phenotypes, and 
immunophenotypes. However, for the purpose of graphical representation, we have redefined these phe-
notypes from the perspective of graph theory, categorizing them into three types: single-cell phenotype, 
multi-cell phenotype, and quantitative phenotypic indicator. For each of these three types, we propose a 
corresponding graph structure. Collectively, these graphs form Pathology Phenotype Graph, each serving as 
a subgraph.

Single-cell phenotype.  Single-cell phenotypes refer to phenotypic manifestations observed in an individual cell, 
which may include changes in cell morphology such as alterations in cytoplasmic structure and nuclear shape, 
or variations in protein expression levels within the cell. Supplementary Table 4 lists some examples of single-cell 
phenotypes. The key to objectively characterizing such a phenotype is to identify the cellular components that 
have undergone pathological alterations, specify their pathological features that have changed, and quantita-
tively describe the extent of the changes, as well as the cell’s hierarchical composition structure. In view of this, 
we provide the definition for the Single-Cell Phenotype Graph as follows:

Definition 2 Single-Cell Phenotype Graph: For a single-cell phenotype sp P∈ , its graph representation is 
denoted as sp a R({ } , )sp sp paG ∪= , where

•	 asp indicates the cell involved in this phenotype;
•	 ⊆ ×R sp a{ }pa sp indicates the corresponding relationship between the phenotype and the cell;

Extended Definition 2 By leveraging Pathology Entity Graph, we can expand the graph representation of a 
single-cell phenotype. The expanded graph is denoted as ∪= sp R({ } , )*sp a pasp

G G , where asp
G  is the Pathology 

Entity Graph of asp. It enriches G*sp by integrating the individual cell’s components, pathological features, and 
quantitative parameters associated with the single-cell phenotype.

A schematic overview of *spG  is provided in Supplementary Figure 1b.

Multi-Cell Phenotype.  Multi-cell phenotypes refer to phenotypic manifestations composed of several cells and 
other microscopically observable pathological entities such as tissues, bio-molecules (e.g mucin, acid and starch) 
or anatomical structures (e.g. cavity). The characteristics of such a phenotype include not only the pathologi-
cal features of each individual entity, but also the spatial arrangement pattern and the dynamic behaviors (e.g 
invasion, extension) among the group of entities, which emerge from their interactions. Supplementary Table 5 
lists some examples of multi-cell phenotypes. To fully reveal the characteristics of a multi-entity pathological 
phenotype, we define Multi-Cell Phenotype Graph as follows:

Definition 3 Multi-Cell Phenotype Graph: For a multi-cell phenotype mp P∈ , its graph representation is 
denoted as ∪ ∪ ∪= ΩG mp E R R({ } , )mp mp pa sb , where

•	 = …E a a a{ , , , }mp M1 2  indicates a group of pathological entities composing the phenotype;
•	 Ω = S D{ , }mp mp  indicates the union of notations representing the spatial arrangement relationships and 

dynamic behaviors;
•	 R mp E{ }pa mp⊆ ×  indicates the corresoponding relationship between the phenotype and the involved patho-

logical entities;
•	 R E Esb mp mp⊆ × Ω × ′  indicates the relationships reflecting the spatial arrangement and dynamic behaviors 

of the pathological entities within the phenotype;

Extended Definition 3 Similarly, we can expand the graph representation of a multi-cell phenotype by using 
Pathology Entity Graph. The expanded graph is denoted as ∪ ∪ ∪= ΩG mp G R R({ } , )*mp E pa sbmp

, where 
G { }E a a Emp i i mp

= ∈G  is a group of Pathology Entity Graphs, with each ai
G  representing the characteristics of a com-

posing pathological entity ai in the phenotype.
A schematic overview of G*mp is provided in Supplementary Figure 1b.

Quantitative phenotypic indicators.  To minimize variability and ambiguity in pathologists’ interpretations 
of pathological phenotypes, experts in pathology and professional organizations have recommended some 
quantitative phenotypic indicators. These indicators are crucial for diagnosis and also enhance the preci-
sion in characterizing pathological phenotypes. Supplementary Table 6 lists some examples of quantita-
tive phenotypic indicators. The numerical values of quantitative phenotypic indicators are calculated based 
on quantitative parameters of specific pathological features associated with certain pathological entities, 
through pre-defined mathematical functions (e.g. TSR and TILs) or visual assessment (HER2 expression), 
depending on the context. Based on this, we provide the definition for the Quantitative Indicator Graph as 
follows:

Definition 4 Quantitative Indicator Graph: For a quantitative indicator qi P∈ , its graph representation is 
denoted as G ∪ ∪ ∪ ∪= qi Q v R R f({ } { }, )qi qi qq qv qv

, where
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•	 = …Q q q q{ , , , }qi T1 2  indicates the group of quantitative parameters used in qi‘s calculation;
•	 v belongs to a set of real numbers , and indicates the numerical value of qi;
•	 R qi Q{( , )}qq qi=  indicates the corresponding relationship between qi and its quantitative parameters;
•	 =R qm v{( , )}qv  indicates the corresponding relationship between qi and its numerical value;
•	 →f Q:qv qi  indicates a function from Qqi to , which is the mathematical formula for calculating qi's value.

A schematic overview of Gqi is provided in Supplementary Figure 1b.

Pathology diagnosis graph.  Pathology Diagnosis Graph represents the evaluation and diagnostic pro-
cesses of pathologists for patients based on their pathological slides. Such graph consists of several types of nodes: 
diagnostic item, diagnostic process, diagnostic stage, diagnostic possibilities and outcome, and diagnostic feature.

Diagnostic items are key data elements of pathology reports to which pathologists should deliver definitive 
diagnostic outcomes. These items are devised by hospitals’ pathology departments, based on comprehensive 
disease reporting requirements and patient care optimization, and are often guided by professional standards. 
For instance, the College of American Pathologists (CAP) cancer protocol7 stipulates diagnostic items for renal 
tumors, which encompass the histologic grading of tumor cells8 and the TNM staging9, among others.

Given the multiple diagnostic possibilities associated with each diagnostic item, the pathologist is required 
to undertake a diagnostic process to ascertain the most appropriate one, referred to as the diagnostic outcome. 
Such process can be divided into different stages including preliminary diagnosis, further diagnosis, and final 
diagnosis, each contributing progressively to a more refined and accurate diagnosis. A diagnostic stage mainly 
includes three steps: 1) examining the patient’s pathology data, 2) considering all diagnostic possibilities, 3) dif-
ferentiating among these possibilities to exclude incorrect ones. The pathologist iteratively performs these steps 
at each stage, proceeds with further diagnostic evaluations, and gradually narrows down the range of possibil-
ities. This process continues until the most accurate possibility is pinpointed. When making a diagnostic deci-
sion, the pathologist primarily considers the pathological phenotypes observed microscopically on pathological 
slides, known as diagnostic features. The diagnostic possibility that are supported by most diagnostic features are 
established as the diagnostic outcome while others are excluded.

Based on the above abstraction of the diagnostic process, we provide the definition for Pathology Diagnosis 
Graph as follows:

Definition 5 Pathology Diagnosis Graph: For a diagnostic process ∈dp DP, its graph representation is 
denoted as G = DS R R( , , )dp ss ds , where

•	 = ∈DS DS{ }i s Si dp
, where = …S s s s{ , , , }dp N1 2  indicates the group of diagnostic stages involved in dp; si indi-

cates the ith diagnostic stage of dp, DSi represents the pathology knowledge involved in this stage;
•	 DS s D P R R({ } , )i i i i pd

i
sd
i∪ ∪ ∪= , where

•	 = + −D D D{ , }i i i  indicates the set of diagnostic possibilities considered by the pathologist at the ith stage, 
divided into the established outcomes Di

+ and the excluded possibilities −Di ;
•	 Pi indicates the phenotypes the pathologist uses for diagnosing a patient;
•	 ⊆ ×R P Dpd

i
i i denotes the logical relationships between diagnostic features (phenotypes) and outcomes, 

including both supportive and contradictive correlations;
•	 ⊆ ×R s D{ }sd

i
i i indicates the corresponding relationship between the diagnostic stage and the diagnostic 

possibilities a pathologist considers within this stage.
•	 ⊆ ×R S Sss dp dp indicates the sequential order among diagnostic stages.
•	 ⊆ ×R dp Sds dp indicates that the group of diagnostic stages are involved in dp.

A schematic overview of dpG  is provided in Supplementary Figure 1c.

Pathology mark-up language.  To standardize the creation of PathoGraph representations, we further 
develop PathoGraph into a markup language based on Web Ontology Language (OWL), known as Pathology 
Markup Language (PathoML). In PathoML, nodes of PathoGraph are implemented as either OWL classes or 
data properties, while edges are represented using object properties. This approach allows PathoGraph rep-
resentations to be instantiated via PathoML elements, transforming the graph representations into standardized, 
machine-readable documents. As a result, PathoML facilitates the storage, exchange, and interpretation of pathol-
ogy knowledge in accordance with the FAIR principles, enhancing the use of PathoGraph in diverse scientific and 
clinical contexts.

The architecture of PathoML classes is shown as Fig. 3a. Entity, Utility and Data are the three root classes. 
Entity includes classes regarding pathological entities, phenotypes and diagnoses, while Utility includes classes 
for pathological features, quantitative parameters, among others. Data includes classes for storing metadata of 
pathology data and PathoGraph representations. In the following sections, we describe PathoML classes and 
properties related to each subgraph of PathoGraph. The complete structures of Entity, Utility, and Data in 
PathoML are illustrated in Supplementary Figures 2, 3, and 4, respectively. A detailed explanation of PathoML is 
available in its language specification (see “Data Availability”).

PathoML elements related to pathology entity graph.  The nodes of Pathology Entity Graph, including patho-
logical entity, pathological feature, and quantitative parameter, are implemented in PathoML as PhysicalEntity, 
EntityAttribute, and Quantification respectively. To increase the specificity of PhysicalEntity, it is further 
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divided into several subclasses based on biological scales, including Cell, Cellular_Component, Protein and 
others. The OWL properties related to Pathology Entity Graph are shown in Fig. 3b. The part-whole relation-
ships among the entities are implemented as the object property hasComponent, and the associations between 
proteins and their residing cellular components are represented using express. Furthermore, hasAttribute is 
employed to link pathological entities with their distinct features, while relationships between pathological fea-
tures and their quantitative parameters are defined using quantification. The datatype property ‘hasValue’ is 
designated for recording the numerical value of each quantitative parameter. Additionally, the ‘segmentation’ 
property serves to pinpoint the precise location of a pathological entity on the pathological slide.

PathoML elements related to pathology phenotype graph.  PathoML employs Phenotype class to encapsulate var-
ious pathological phenotypes. This class is further subdivided into four distinct subclasses: Cytopathological_
Phenotype, Histopathological_Phenotype, Immunophenotype, and Quantitative_Indicators.

Cytopathological_Phenotype and Histopathological_Phenotype describe single-cell and multi-cell phe-
notypes observed in H&E slides, whereas Immunophenotype pertains to those identified in IHC slides. The 
associated OWL properties are shown in Fig. 3c. present_Entity links each phenotype to one or more entities 
that constitute it. Additionally, PathoML introduces Relationship to articulate both spatial arrangement rela-
tionships and dynamic interactions among pathological entities involved in multi-cell phenotypes. Relationship 
encompasses two object properties: subject and object. In the context of dynamic behavior, subject links to the 
entity initiating the action (e.g. a tumor invading a renal sinus), whereas object links to the entity at which the 
action is directed (e.g. the renal sinus being invaded). Conversely, in depicting spatial arrangement, subject 
connects to the entity that acts as the reference point (e.g. a tumor enveloping a fibrovascular core), while object 
connects to the entity whose position or orientation is defined in relation to the subject entity (e.g the fibrovas-
cular core being enveloped). Furthermore, Relationship could accommodate multiple instances of subject and 
object properties to represent complex relationships.

Fig. 3  Overview of PathoML. (a) The high-level structure of PathoML in which PathoML classes are shown as 
boxes and arrows represent subclass relationships. (b–e) Illustration of how PathoML represents a single-cell 
immunophenotype, a multi-cell histopathological phenotype, a quantitative indicator and a diagnostic process, 
respectively. The individuals of PathoML classes are shown as boxes while the properties are shown as labelled 
arrows. The labels on the arrows indicating the object properties are italicized while the ones indicating the 
datatype properties are not. The labels of datatype properties are formed as “Name:Datatype”.
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Quantitative_Indicator is designated to characterize quantitative phenotypic indicators. Its related proper-
ties are shown in Fig. 3d. has_quantity establishes a link between an instance of Quantitative_Indicator and the 
set of quantitative parameters involved in its computation. Furthermore, Quantitative_Indicator is equipped 
with two essential datatype properties: ‘hasValue’, which records the numerical outcome of the indicator, and 
‘hasFormula’, which captures the computation formula in the standardized MathML format10.

PathoML elements related to pathology diagnosis graph.  The nodes of Pathology Diagnosis Graph, such as 
diagnostic process, stage, and possibility, are represented as DiagnosisProcess, DiagnosisStage, and Diagnosis, 
respectively. Figure 3e depicts their properties. The property diagnosisOrder connects a DiagnosisProcess 
instance with its associated DiagnosisStage instances, indicating the stages within that process. nextStep links 
sequential DiagnosisStage instances, showing their progression through the diagnostic process. stepProcess 
associates a DiagnosisStage instance with one or more Diagnosis instances, representing the diagnostic possi-
bilities considered at that stage. hasSupportEvidence and hasContradictEvidence properties define the supportive 
and contradictory connections between diagnostic features and diagnostic possibilities. Additionally, Diagnosis 
is categorized into Differential_Diagnosis and Final_Diagnosis, denoting the excluded possibilities and the 
diagnostic outcome respectively.

Other PathoML elements.  In addition to PathoGraph’s elements, PathoML includes other OWL constructs 
designed to store metadata related to PathoGraph representations and associated pathology data. For example, 
Data includes HE_slide, IHC_Slide and Pathology_Report for storing metadata of pathological slides (e.g. 
height, width and magnification of a slide) and pathology reports respectively. has_Phenotype (Fig. 3b,c,d) and 
has_Process (Fig. 3e) link pathology data to PathoGraph representations of the pathology knowledge contained 
in the data. Additionally, PathoML provides Xref class for mapping PathoGraph representations to controlled 
vocabularies for achieving naming consistency, linked by the property hasXref.

Exemplar use of PathoGraph for knowledge representation.  To illustrate that PathoGraph could effec-
tively represent the complex meaning of pathology knowledge, we provide several examples covering a single-cell 
immunophenotype, a multi-cell histopathological phenotype, and two diagnostic processes of pathologists.

HER2 immunophenotype of breast cancer.  We first select a breast cancer IHC slide labelled for HER2 antigen 
and use PathoGraph to describe the staining characteristics of the tumor cells in the slide, as shown in Fig. 4. 
Each tumor cell in the slide stained by HER2 indicates a single-cell immunophenotype. HER2 typically stains 
the cell membrane of a breast cancer tumor cell. More specifically, parts of the membrane where HER2 resides 
are stained, whereas other parts lacking HER2 remain unstained. Therefore, the extent to which the membrane 
is stained indicates the quantity of HER2 present in a tumor cell. The annotations in Fig. 4a specifically illustrate 
the stained and unstained parts of the cell membrane for each tumor cell.

As demonstrated in Fig.  4b, PathoGraph describes a HER2 immunophenotype as an instance of 
Immunophenotype, named ‘Phenotype1’. As for the HER2-stained tumor cell, it creates a NeoplasticCell 
instance named ‘Cell1’, referring to the tumor cell itself. Then, for the cell’s membrane and nucleus, it gen-
erates instances of NeoplasticCellularComponent, named ‘Membrane1’ and ‘Nucleus1’, respectively. Finally, 
an instance of Protein, named ‘HER2’, represents the HER2 antigen. ‘Cell1’ is connected to ‘Membrane1’ and 
‘Nucleus1’ via hasComponent, and ‘Membrane1’ is linked to ‘HER2’ through express. To detail the staining 
characteristics, PathoGraph generates an EntityAttribute instance (named ‘Medium’) to represent the stain-
ing extent of the cell membrane. Additionally, a Quantification instance (named ‘Quantification1’) provides a 
quantitative measure of the staining extent, indicating that 75% of the cell membrane is stained (see “Methods” 
for details). The EntityAttribute and Quantification instances are associated through the quantification rela-
tionship. For brevity, the PathoGraph representations of other tumor cells have been omitted.

Follicular pattern of papillary thyroid carcinoma.  We select a follicular pattern of papillary thyroid carcinoma 
to show how PathoGraph represents multi-cell phenotypes, as shown in Fig. 5. In this type of thyroid carcinoma, 
the normal follicular architecture of the thyroid gland is disrupted, leading to follicles being tightly packed 
together, sometimes with follicular structures pressing against each other. Figure 5a shows a back-to-back 
arrangement of two follicles, which is one of the important features in the pathological diagnosis of papillary thy-
roid carcinoma. PathoGraph describes this phenotype as an instance of Histopathological_Phenotype named 
‘Phenotype2’. As for the follicles composing this phenotype, PathoGraph builds two instances of Tumor named 
‘Tumor1’ and ‘Tumor2’ to indicate the follicles. Furthermore, it generates instances of Stroma, Parenchyma, 
Substance as well as NeoplasticCell to represent the follicles’ components, and links them together using has-
Component. In order to describe the back-to-back arrangement of these two follicles, we build a Relationship 
instance, wherein subject links to ‘Tumor1’ and object links to ‘Tumor2’.”

Histological subtyping process for a cervical pathological slide.  Now we show how PathoGraph represents a 
diagnostic subtyping process of a pathologist for a cervical HE-stained pathological slide, as illustrated in Fig. 6. 
PathoGraph firstly creates a DiagnosisProcess instance (named ‘Process1’) indicating the subtyping process 
(Fig. 6a). This process consists of three individual diagnostic stages, represented by three DiagnosisStage indi-
viduals (named ‘Stage1’, ‘Stage2’, ‘Stage3’), to which diagnosisOrder links ‘Process1’. nextStep links these three 
DiagnosisStage individuals, showing their sequential order. The descriptions of diagnostic outcomes within 
each stage are as follows:
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At the first stage, the pathologist identifies several widely-distributed glandular patterns under a microscope 
at low magnification, which leads to an initial diagnosis that this tumor is an adenocarcinoma. To describe 

Fig. 4  The exemplar PathoGraph representation of a HER2 Immunophenotype, presented in a form of 
PathoML. An individual of PathoML class is shown as a rounded rectangle. PathoML class names are 
highlighted in bold, the object properties are italicized while the datatype properties are not. “is a” indicates the 
declaration of an individual as belonging to a specific PathoML class.

Fig. 5  The exemplar PathoGraph representation of a follicular pattern.
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this diagnosis, PathoGraph creates a Diagnosis instance (named ‘Diagnosis1’), and links it to the Phenotype 
instances describing those evidential glandular patterns via hasSupportEvidence, which is shown in Fig. 6b. 
Additionally, PathoGraph links ‘Stage1’ to ‘Diagnosis1’ through stepProcess.

Then, the pathologist performs a more detailed examination on the glandular patterns at medium and 
high magnification. In the two of glandular patterns, he detects apoptotic bodies (i.e. a vesicle containing 
parts of a dying cell) and luminal mitoses (i.e. a tumor cell with a mitotic chromosome close to the inner 
side of the gland). With these phenotypes in mind, he could further sub-categorize this patient as Human 
papillomavirus-associated endocervical adenocarcinoma (HPVA). Correspondingly, PathoGraph builds 
‘Diagnosis2’ along with other relationships, as Fig. 6c shows.

Finally, the pathologist evaluates the tumor cells with intracytoplasmic mucin in the tumor areas and deter-
mines that 40% of the tumor cells contain intracytoplasmic mucin. This finding leads to the conclusion that 
the histologic type of the tumor is HPVA, usual type. PathoGraph represents this diagnosis using ‘Diagnosis3’. 
Additionally, it considers the proportion of tumor cells with intracytoplasmic mucin as a quantitative pheno-
typic indicator, which is represented through a Quantitative_Indicators instance, shown in Fig. 6d.

Differential diagnosis for histological subtyping of lymphoma.  We further demonstrate how PathoGraph repre-
sents a differential diagnostic process, as illustrated in Fig. 7. In this case, the pathologist differentiates among 
three possible lymphoma subtypes to ascertain the most accurate diagnosis. Initially, the pathologist evaluates 
the HE slide and makes a preliminary diagnosis of lymphoma. In the second stage, to refine the diagnosis, the 
pathologist differentiates among three subtypes of lymphoma, including T-Cell and NK-Cell lymphoma, large 
B-cell lymphoma, and Hodgkin lymphoma. Due to the insufficiency of the HE slide alone for a conclusive diag-
nosis, additional IHC testing results on LCA, CD20, and BOB1 are incorporated for further differentiation. The 
IHC results support large B-cell lymphoma and contradict the other subtypes, leading to its establishment as the 
diagnostic outcome at the second stage.

As Fig. 7a shows, although the pathologist could further differentiate subtypes of large B-cell lymphoma in 
the next stages, we mainly show PathoGraph represents the second stage of this diagnostic process. PathoGraph 
builds Phenotype instances to represent evidential phenotypes, including the one observed in the HE slide, and 
three other immunophenotypes, as Fig. 7c shows. Additionally, PathoGraph constructs Differential_Diagnosis 
instances for the excluded subtypes, and a Final_Diagnosis for the established subtype, linking them to the 
Phenotype instances through hasSupportEvidence and hasContradictEvidence, as Fig. 7b shows.

Technical Validation
PathoGraph transforms pathology knowledge hidden and fragmented in pathology data into explicit and struc-
tured graph representations, thereby facilitating its computational use. To demonstrate this, we present a series 
of technical validations in this section.

Automatic construction of pathology entity graph.  A large-scale PathoGraph is essential for enabling 
AI-based pathology practices. To demonstrate the technical feasibility of automatically constructing PathoGraph, 
we take the Pathology Entity Graph (PEG) as an example and propose an automated workflow, which extracts 
pathological entities and their features from pathology image patches, assembles them into PEG, and ultimately 
translates the results into PathoML.

As shown in Fig. 8a, the automated construction of PEG consists of three steps: 1) Given a pathological 
image patch, we first segment the tumor regions using a tool named BiomedParse11, then detect both neoplastic 
and non-neoplastic nuclei via CellVit12. To capture the pathological features of neoplastic nuclei, we compute 
various morphological parameters, including area, roundness, and shape factor etc. Finally, we establish the 
part–whole relationships between the neoplastic nuclei and tumor regions based on their spatial overlap. 2) We 
treat the segmented tumors, neoplastic nuclei, and their morphological features as graph nodes, and encode 
the part–whole relationships between the tumors and their neoplastic nuclei, as well as the affiliations between 
the nuclei and their features, as graph edges. In this way, we generate a tumor PEG that describes the compo-
sition of each tumor cluster, as well as its morphologic characteristics. 3) Using the corresponding PathoML 
elements, all tumor PEGs extracted from the patch are collectively translated into PathoML and saved as a single 
OWL-format document.

We further construct a graph dataset by applying this workflow to the public BReAst Cancer Subtyping 
(BRACS) dataset12. For each patch image in BRACS—4,391 in total—we generate a corresponding PEG. As 
illustrated in Fig. 8b, each PEG uses nodes to represent the tumors and neoplastic nuclei recognized in the patch, 
with bounding box coordinates and segmentation outlines stored as node attributes. Additional nodes capture 
each neoplastic nucleus’s pathological features and quantitative parameters. The hasComponent edge links each 
tumor to its individual neoplastic nuclei, while hasAttribute and quantification edges connect a nucleus, its 
pathological features, and morphological parameters.

Enhancing computational pathology model performance with PathoGraph.  We choose 
patch-based subtyping as the learning task, to examine whether PathoGraph could improve deep learning-based 
computational pathology models. We continue using BRACS as the dataset, and the task is three-class classifica-
tion, whose goal is to predict whether a given patch is benign tumors, atypical tumors or malignant.

Regarding the experimental design, we employ a GraphSAGE + SAGPooling framework13 for graph-based 
learning, which is widely used for embedding pathology patch images14, and MLP as the classifier. For each 
patch, we construct two distinct graph structures. The first one is constructed by splitting the patch into smaller 
sub-patches (or regions) and use a nearest-neighbor approach to connect these sub-patches as graph nodes, 
creating edges based on spatial proximity, while the second is PEG, as previously described. We then train the 
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model separately on these two types of graphs, obtaining two sets of patch embeddings. Finally, we compare 
their performance on the downstream classification task. The details of the experiment setting are provided in 
‘Methods’.

As shown in Fig. 9, the model that incorporates PEG demonstrates superior performance, suggesting that 
PEG-based representations can indeed provide performance gains for downstream computational pathology tasks.

Fig. 6  The exemplar PathoGraph representation of a histological subtyping process for a cervical pathological 
slide, presented in a form of PathoML. (a) An overview of the slide, and the PathoGraph representation of the 
diagnostic process, as well as the metadata of the corresponding pathology report from which this process is 
derived. (b-d) The PathoGraph representations of the three diagnostic stages involved in this diagnostic process.
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Case study for clinical relevance of PathoGraph.  To further establish PathoGraph’s clinical relevance, 
we present two illustrative use cases demonstrating how PathoGraph can support quantitative and traceable 
assessments in real-world diagnostic scenarios.

Quantitative analysis of HER2 expression.  Accurate assessment of HER2 expression status in tumor cells is 
crucial for predicting the prognosis and treatment efficacy for breast cancer patients15. Pathology reports issued 
by hospitals typically provide only the assessment results of HER2 status, lacking details on the staining charac-
teristics and methods used in the assessment. It not only diminishes the credibility of the results but also reduces 
their comparability for future research. PathoGraph representations of immunophenotypes encompass staining 
locations of antigens on tumor cells, as well as quantitative descriptions of the antigens’ staining characteristics. 
PathoGraph further allows for retrieval and analysis of these features. This could enable a quantitative and trace-
able assessment of the HER2 protein expression status in tumor cells.

We implement a use case of HER2 expression analysis based on the technique of SPARQL query. The work-
flow for this use case is depicted in Fig. 10. The PathoGraph representations being processed in this use case are 
previously illustrated in Fig. 4. Initially, the application constructs a SPARQL query using PathoML class names 

Fig. 7  The exemplar PathoGraph representation of a differential diagnosis for histological subtyping of 
lymphoma, presented in a form of PathoML. (a) The PathoGraph representations of the three diagnostic stages. 
(b) The representations of the three diagnostic possibilities to be differentiated in the second stage. (c) The 
evidential phenotypes the pathologist uses to differentiate the diagnostic possibilities. Green lines represent 
supportive relationships and red lines represent contradictions between phenotypes and diagnostic possibilities.
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and property names as identifiers. This query retrieves tumor cells as well as their HER2 staining characteristics. 
The application then calculates the percentage distribution of staining extent across the membranes of tumor 
cells. Based on these quantitative results, the HER2 status is determined automatically based on the criteria out-
lined in Table 2. The distribution shows that 75% of tumor cells exhibit complete membrane staining, 15% show 
moderate completeness, 5% have incomplete staining, and 5% are unstained. Consequently, considering this 
percentage distribution, the HER2 protein expression status of this IHC slide is classified as ‘3 + ‘. Following this 
workflow, the HER2 status is determined based on quantitative metrics calculated using morphometric methods 

Fig. 8  Overview of the automatic construction pipeline for a Pathology Entity Graph (PEG). (a) Pathological 
entities (tumors, nuclei) are segmented from the input image, their features (area, roundness, etc.) are 
computed, and part–whole relationships are established. (b) Schematic view of the generated PEG.

Fig. 9  Performance comparison with mean and standard deviation. The bar chart shows the mean performance 
and standard deviation (represented by error bars) of two methods:one trained using PathoGraph and the other 
using patch graph, evaluated across five random seeds. Performance metrics include accuracy, weighted one-
versus-rest F1 score, and one850versus-rest F1 scores for each class (“Benign”, “Atypical”, and “Malignant”).
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from pathology slides, rather than through visual observation of pathologists. Every step of the assessment as 
well as the features involved could be reviewed and verified, enhancing the credibility and reproducibility of the 
diagnostic results.

Automatic histologic subtyping.  PathoGraph represents the diagnostic logics of pathologists in a comprehensive 
and structured way. Based on such representations, diagnostic assistance can be achieved automatically using 
various technical methods. To validate this application of PathoGraph, we implement a use case of automatic 
histologic subtyping based on the technique of ontological reasoning. The workflow for this use case is depicted 
in Fig. 11. The input of this workflow is a PathoGraph representation of phenotypes in a pathological slide, and a 
representation of a pathologist’s diagnostic approach used to diagnose the slide. The application then transforms 
the PathoGraph representations into ontological statements based on Description Logic16 (DL) respectively. It 
could infer a subtyping result by invoking an ontology reasoner (e.g. ELK17) to perform subsumption checking 
between the ontological statements.

Specifically, Fig. 11 shows a subtyping process for a cervical HE-stained pathological slide. The PathoGraph 
representation of this slide describes three pathological phenotypes observed within this slide: an apoptotic 
body, an apical mitosis and a glandular pattern. Additionally, the PathoGraph representation of the pathologist’s 
diagnostic approach, illustrated previously in Fig. 6, serves as the other input. These PathoGraph representations 
are then converted into ontological statements. Upon application of the ELK reasoner, it infers that the pheno-
typic evidence observed from the slide is logically implied under the ontological statement corresponding to 
cervical adenocarcinoma. Moreover, it establishes a logical equivalence between the statement of the slide and 
the one attributed to HPVA, indicating that the histological subtype of the slide is classified as HPVA.

Discussion
In this section, we will discuss the significance of PathoGraph within the realm of AI-driven pathology practice. 
We firstly outline the applications of AI in the field of pathology and emphasize the importance of systematically 
organizing pathology knowledge contained in pathology data for these applications. Subsequently, we argue 
that PathoGraph would play a critical role in fulfilling this crucial yet unaddressed need, thus having potential 
to advance AI applications in disease research and clinical practice.

Recent advances in AI technology have spurred the development of new research domains in pathology. This 
includes computational oncology, deep phenotyping, and automated pathology diagnosis. In these domains, 

Fig. 10  The workflow of quantitative analysis of HER2 expression.
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researchers employ statistical and machine learning methods to deeply analyze features derived from pathology 
data (referred to as “pathology knowledge” in this paper)18. This analysis helps in identifying patterns in the 
disease’s onset, progression, and diagnosis, shedding light on the mechanisms that cause diseases19–21, as well 
as assisting in their early detection and effective treatment4,22–24. Supplementary Table 7 details the objectives, 
methods, and key pathology knowledge underpinning computational analysis in these domains. However, a sig-
nificant barrier to leveraging AI effectively in pathology is that pathology knowledge is hidden and fragmented 
across large datasets. Overcoming this hurdle is essential for actualizing the envisioned applications of AI in 
pathology.

This paper demonstrates that PathoGraph can not only represent pathology knowledge explicitly and com-
prehensively through its graph-based structure but also enhance its accessibility and computational utility. 
PathoGraph representations include detailed characteristics of diseases and encapsulate the diagnostic exper-
tise of pathologists, potentially supporting AI analyses for disease understanding and automated diagnosis. 
Furthermore, the development of PathoML standardizes the creation, exchange, and integration of knowledge 
resources based on PathoGraph, paving the way for the construction of a robust pathology knowledge base. 
Much like how biomedical knowledge bases such as UniprotKB25, Reactome26, and BioModels27 have signif-
icantly advanced AI applications in biomedicine28,29, the integration of PathoGraph and PathoML is poised 
to establish a similar foundational framework for pathology. In this context, PathoGraph serves as the central 
graph model of the knowledge base, while PathoML drives consistent data exchange and interoperability. This 
graph-based knowledge base is anticipated to play a crucial role in developing scalable and robust AI method-
ologies for pathology.

An additional advantage of PathoGraph is its inherent capacity to fully leverage the strengths of graph 
machine learning30 (Graph ML), thereby improving the effectiveness of AI techniques in addressing real-world 
challenges in pathology. Graph ML excels in capturing complex semantics and hidden patterns within graph 
data, which are instrumental in addressing a range of downstream tasks. The application of Graph ML has 
already shown promising results in biomedicine and healthcare31, such as pinpointing genetic variants that con-
tribute to complex traits, decoding single-cell behaviors, etc. Consequently, integrating PathoGraph with Graph 
ML could be a promising step towards unlocking the potential of AI in the field of pathology.

In conclusion, as the hidden and fragmented pathology knowledge impedes its computational utilization, we 
propose PathoGraph. It addresses the deficiency of a standardized knowledge representation method in the field 
of pathology, making a solid first step towards the goal of organizing and leveraging vast amounts of pathology 
knowledge in a highly efficient and intelligent manner. As AI technology advances, particularly with the advent 
of foundational models32, a vast amount of pathological knowledge could be automatically extracted from data 
and organized into PathoGraph representations. Given this fact, we believe that the value of PathoGraph will 
progressively elevate from a theoretical level to an application level, contributing to transformative develop-
ments in pathology.

Methods
Research process of PathoGraph.  Making pathology knowledge contained in pathology data find-
able, accessible, interoperable, and reusable (FAIR) is crucial for AI applications in the field of pathology. To 
achieve this goal, we conducted a series of research endeavors over the past four years. Initially, we introduced 
the Histopathology Mark-up Language (HistoML)33, an OWL-based file format specifically designed for storing 
and exchanging annotations of digital pathology slides, notably Whole Slide Images (WSIs). Before the advent of 
HistoML, WSI annotations generated by different groups were stored in diverse file formats such as CSV, JSON, 
and XML, without a standardized or controlled vocabulary. This led to a significantly heterogeneous collection 
of annotated resources, that are extremely difficult to combine and reuse. HistoML was developed to standardize 
the exchange format and enhance the interoperability of WSI annotations.

However, as the application of AI in pathology continues to evolve, there is a clear shift from basic WSI analy-
sis, which primarily focuses on the automatic extraction of image-based features, to more complex, context-rich 
tasks within biomedical and clinical disciplines. These advanced tasks, including computational oncology, deep 
phenotyping, and automatic diagnosis, require not only a deeper interpretation but also a broader integration of 
the comprehensive pathology knowledge contained within multi-modal pathology data. This need goes beyond 
simply analyzing a limited spectrum of cell and tissue types present in WSIs to generate meaningful insights.

Recognizing this need, along with the hidden and fragmented nature of pathology knowledge within pathol-
ogy data, we develop PathoGraph. Unlike HistoML, PathoGraph is specifically designed to standardize the rep-
resentation of knowledge in multi-modal pathology data, of which the content is much richer and more complex 
than WSI annotations. The aim of PathoGraph is to transform pathology data into a unified and computable 
knowledge framework, fostering more integrated, knowledge-driven AI applications in the field of pathology. 
Building on PathoGraph, we further refine HistoML and introduce PathoML, serving as the exchange and 

HER2 Status Assessment Criteria

3+ >10% tumor cells show complete staining (staining completeness [0 9, 1]∈ . ).

2+ >10% tumor cells show moderate staining (staining completeness [0 7, 9)∈ . ).

1+ >10% tumor cells show incomplete staining (staining completeness [0 5, 0 7)∈ . . ).

0 >90% tumor cells are unstained (staining completeness [0, 0 5)∈ . ).

Table 2.  The Assessment Criteria of HER2 Status.
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storage format for PathoGraph representations. The synergy between the knowledge representation method 
and the exchange format paves the way to make pathology knowledge FAIR.

PathoGraph and PathoML development.  Modelling knowledge in a graph structure is an effective and 
widely-used method for making knowledge computable, and graph representations of biomedical knowledge 
are prevalent in biomedical knowledge bases. For instance, UniProtKB utilizes a graph structure to describe pro-
tein knowledge34, where nodes represent proteins and their features, such as catalytic activity, physicochemical 
properties, and single nucleotide polymorphisms, and edges represent their interaction relationships. Similarly, 
Reactome35 and BioModels36 adopt graph structures to describe biological pathways, physiological processes, 
and drug actions by defining multiple sub-graphs. Given the proven efficacy of graph structures in representing 
intricate biomedical knowledge, a graph-based methodology is particularly well-suited for encapsulating the 
multifaceted and complex nature of pathology knowledge.

The development of PathoGraph and PathoML was conducted under the supervision and guidance of 
pathologists and medical professionals. The expert panel includes directors from the pathology departments of 
four grade “A” hospitals in China and the Mayo Clinic in the USA. The directors and their teams boast over 30 
and 10 years of experience, respectively. In addition to the expertise of these pathology specialists, the develop-
ment was also based on authoritative pathology textbooks37,38, diagnostic monographs39, and guidelines8,40–43, 
ensuring that PathoGraph definitions are rigorously grounded in knowledge.

Implementation details for the pathograph performance experiments.  We employ a three-stage 
Graph Neural Network (GNN) pipeline, where each stage consists of a GraphSAGE convolution layer followed by 
a self-attention pooling operation (SAGPooling). Specifically, we have three consecutive blocks, each applying 
GraphSAGE for feature aggregation and then SAGPooling to reduce the graph. After these three blocks, the 
pooled output is passed through a three-layer MLP for final classification. We adopt most hyperparameters from 
the paper14, except for the learning rate, which is set to 2 × 10−5.

For each patch, we construct two distinct graph structures which are later fed into the model: one is PEG, 
and the other is constructed by the nearest-neighbor approach. Specifically, the nearest-neighbor approach first 
crops the original patch into 256-pixel × 256-pixel regions and extracts the center point of each cropped patch. 
Then, for each small patch, it identifies k nearest neighbors and constructs edges between them. Finally, all small 
patch graphs are aggregated to form a complete graph.

Node embedding initialization is carried out by CONCH44. In the Pathology Entity Graph (PEG), each 
node corresponds to either the original patch, a tumor region, or a neoplastic nucleus. For a neoplastic 

Fig. 11  The workflow of automatic histologic subtyping. ∩ represents the conjunction operator, ≡ represents 
logical equivalence, ∃ represents the existential quantifier, ⊆ represents logical implication.
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nucleus, we extract a 512-dimensional embedding from its segmented region using CONCH, then append five 
morphological-feature parameters (e.g., shape factor, area etc.), yielding a total of 517 dimensions. For the tumor 
region and the original patch, we obtain 512-dimensional embeddings from CONCH and pad them with −1 to 
maintain the same 517-dimensional shape. As for the nearest-neighbor graph, each node is directly initialized 
with a 512-dimensional embedding from CONCH.

We select BRACS as the benchmark dataset and follow its original data split, where 60% is used as the train-
ing set, 20% as the validation set, and 20% as the hold-out testing set. The trained model which achieves highest 
validation accuracy is used for testing.

Development of the exemplar representations and the use cases.  The pathology data used to con-
struct the exemplar PathoGraph representations were obtained from the First Affiliated Hospital of Xi’an Jiaotong 
University. Ethical review and approval of the study was provided by the hospital, and the reference number 
is KYLLSL-2021-420. Informed consent had been waived before the research was carried out. The data of the 
patients included in the study were de-identified and do not contain any protected health information or label text.

The staining extent of the cell’s membrane provided by Fig. 4b is calculated as follows:

Staining Extent /2 = θ π

where θ represents the arc corresponding to the part of the cell membrane stained with the HER2 antigen. We 
used scikit-image45 libraries to calculate the staining completeness.

Data availability
The graph dataset, the exemplar PathoML representations and the ontology specification of PathoML are freely 
available at https://github.com/Peiliang/PathoML.

Code availability
The source code of the construction pipeline, the performance experiment and the two use cases are freely 
available at https://github.com/Peiliang/PathoML.
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