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ML-extendable framework for 
multiphysics-multiscale simulation 
workflow and data management 
using Kadi4Mat
Somnath Bharech   1, Yangyiwei Yang   1 ✉, Michael Selzer   2, Britta Nestler   2 &  
Bai-Xiang Xu   1 ✉

As material modeling and simulation has become vital for modern materials science, research data 
with distinctive physical principles and extensive volume are generally required for full elucidation 
of the material behavior across all relevant scales. Effective workflow and data management, with 
corresponding metadata descriptions, helps leverage the full potential of data-driven analyses for 
computer-aided material design. In this work, we propose a research workflow and data management 
(RWDM) framework to manage complex workflows and resulting research (meta)data, while following 
FAIR principles. Multiphysics-multiscale simulations for additive manufacturing investigations are 
treated as showcase and implemented on Kadi4Mat – an open source research data infrastructure. The 
input and output data of the simulations, together with the associated setups and scripts realizing the 
simulation workflow, are curated in corresponding standardized Kadi4Mat records with extendibility 
for further research and data-driven analyses. These records are interlinked to indicate information flow 
and form an ontology-based knowledge graph. Automation scheme for performing high-throughput 
simulations and post-processing integrated with the proposed RWDM framework is also presented.

Introduction
Materials science stands at the forefront of numerous technological innovations spanning across various indus-
tries, with a particular emphasis on its engineering background. It has evolved from its empirical and experi-
mental roots, which focused on engineering the chemical composition and the microstructure of materials to 
achieve specific properties tailored for certain applications, to embracing modeling and simulation as another 
aspect in the new century, revolutionizing the field with computer-aided material design. This modern approach 
significantly accelerates the lifecycle of material innovation while reducing costs, time, resources, and energy 
waste, marking a significant advancement in the pursuit of sustainable and smart material development1–3. The 
vast disparity in scales and the interdisciplinary nature of material modeling and simulation present fresh chal-
lenges in this domain, as materials exhibit behaviors across a wide range of spatial and temporal scales, which 
collectively influence their overall properties. Addressing these phenomena demands a variety of theoretical 
methodologies, each adhering to certain physical principles at corresponding scale. In other words, the multi-
physics and multiscale frameworks are required to fully elucidate material behaviors across all relevant scales. 
As a result, extensive data bonded with corresponding physical principles at varying scales are normally antic-
ipated in a material modeling and simulation attempt. These data can be roughly classified into three types: (1) 
input data, which are the pre-requisite quantities and geometries describing the raw/pure materials, intrin-
sic structures and physical conditions to initiate certain physical processes at corresponding scale; (2) output 
data, which are the direct/post-processed quantities and geometries presenting the response of the physical 
process according to certain input data; (3) auxiliary/associated data, which are not related to the input/output 
of a simulation, but give the necessary information to reproduce the output from a given input. To follow the 
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state-of-the-art FAIR (findable, accessible, interoperable and reusable/reproducible) principles for data sharing4, 
all three types of data should be collected and recorded as close to the data producing source as possible5, leading 
to the proper design of the data infrastructure with considerations such as the efficiency, readability, extendibil-
ity, and reliability.

Meanwhile, with the rapid development of the high-performance computing clusters, it is possible 
to perform material simulations in a high-throughput fashion, i.e., numerous extensive simulation tasks 
are simultaneously executed, targeting on the objectives requesting vast volume of data, e.g., delivering the 
process-microstructure-property (PMP) relationships for the manufacturing of a certain material system6. For 
instance, in additive manufacturing realized by powder bed fusion (PBF) techniques, over one hundred process 
parameters directly influence the final products7,8. The most critical ones, including beam power, scan speed, 
beam diameter, layer thickness, hatch distance, and scanning strategies, need to be adjusted for each individual 
build, considering the specific material and geometry. In such cases, data-driven analyses based on statistics 
and/or machine learning (ML) are generally adopted to extract the PMP relationships of the targeted material 
system. It has been proven that data management following the FAIR principles is a key to perform scalable 
ML-based researches, as it readily compacts data describing the raw/pure material, the process parameters and 
conditions, and the response/effective properties of the processed materials, achieving the data-centric ML anal-
yses9,10. Meanwhile, many modeling and simulation methods may have to be integrated as one workflow reca-
pitulating essential factors from various scales in a single material process, it is then essential to manage not just 
the data involved in a simulation workflow, but also scripts or protocols that realize the workflow in an automatic 
way enabling the high-throughput computations (HTC)11. This can help to adapt the established simulation 
workflow for similar material systems while retaining complete reproducibility, fostering collaborative research 
and efficient knowledge transfer. Beyond these, the effective management and curation of data, coupled with 
simulation workflows adhering to FAIR principles, is also foundational to both scientific accountability and the 
robust validation and verification of research findings12.

Following the generalized data-information-knowledge (DIK) hierarchy as introduced by Chaffey and 
Wood13, a comparison can be made with simulation-based investigations. As shown in the DIK hierarchy in 
Fig. 1, data is viewed as a discrete set of facts that, when processed, is transformed into information. Further 
analysis of this information leads to knowledge. This vertical transformation of data is represented using a pyra-
mid, which also signifies the condensation of volume as the data gradually transform into knowledge. Likewise, 
in a typical simulation-based research, raw simulation data forms the foundation of this hierarchy and needs 
processing for visualization. Further analysis leads to insightful trends which are usually well-documented in 
form of scientific publications, as schematically represented in Fig. 1. In order to maintain the comprehensive-
ness of the recorded knowledge, it is important to identify and recognize supporting items such as material data-
sets, software configuration and input parameters used in the simulations, along with pre- and post-processing 
scripts applied to the raw and the processed data. This strategy for research workflow and data management 
(RWDM) concurs with the input-process-output (IPO) concept introduced by Griem et al.14. They describe an 
atomistic approach where research processes can be iteratively structured as tasks and those tasks are further 
represented as horizontal transformation with three generic components: (1) Input, (2) Process and (3) Output. 
Applying the IPO concept throughout the different stages of the DIK hierarchy ultimately enables us to represent 
the complete research process. Therefore, it becomes evident that an effective RWDM framework must include 
both horizontal as well as vertical components of a research investigation.
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Fig. 1  (a) Data-Information-Knowledge (DIK) hierarchy of research data inspired by Chaffey and Wood, 2005 
(Chapter 5)13,44. This hierarchy is analogous to a typical research data lifecycle, which starts as sets of discrete 
data. The data is processed into information and then further condensed into knowledge, which is generally 
documented in form of research articles. (b) Workflow of a simulation-based research, where various (meta)
data aid the generation of raw simulation data. This data is further processed using scripts and macros on 
various software. The processed data is further analysed to form meaningful correlations, predictions and 
trends, which are ultimately published as scientific research.
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Kadi4Mat, the Karlsruhe Data Infrastructure for Materials Science, is an open-source research data infra-
structure developed by Karlsruhe Institute of Technology15,16. It utilizes records, which are essentially digital 
objects, as the fundamental building blocks for the infrastructure to store and manage research data. The records 
are uniquely identified with their persistent identifiers (PID) and can hold associated metadata alongside the 
data itself. Kadi4Mat offers various features to organize and manage (meta)data effectively. Records from an 
investigation can be grouped together to form collections with further sub-categorization using child collections. 
Additionally, customizable templates help maintain consistency and standardization within records. The curated 
research data, in the form of records, can be visualized as a knowledge graph, where individual records are linked 
based on their relationships. This promotes data exploration and understanding of complex relationships within 
the research data. Kadi4Mat implements a role-based access control for the records. Owners can set permis-
sions for users or groups based on their predefined roles like administrator, editor, collaborator and member. 
This selective access control ensures data security during the course of the investigation, meanwhile enhancing 
collaboration among researchers and scientific staff at different access levels. On the other hand, the research 
data records can be published for broader accessibility, and can even be published on open repositories such as 
Zenodo for universal access. At present, Kadi4Mat hosts 100+ users from a variety of institutions, who have con-
tributed more than 480 publicly accessible records. Apart from Kadi4Mat, there is a variety of electronic labora-
tory notebook (ELN) based research data management (RDM) tools available, such as LabArchives17, labfolder18, 
NOMAD19 and eLabFTW20,21. Although most of them provide common functionalities for RDM as Kadi4Mat 
such as data integrity, data and research security, version control and team collaboration, they lack in one way or 
the other in comparison with Kadi4Mat. Some of them are commercial software, while Kadi4Mat is open source. 
In addition to serving as a ELN, Kadi4Mat also functions as the data repository distinguishing it from the RDM 
tools that primarily function as lab notebooks. In addition to the web interface, Kadi4Mat also provides pro-
grammatic access through its python-based application programming interface (API) called KadiAPY22. This ena-
bles potentially automated interaction with Kadi4Mat using personal access tokens (PAT), facilitating seamless 
integration of RWDM workflows with HTC workflows. The research data generated from such investigations 
often needs to be exported for ML analyses. The data can be fetched and processed directly into the ML models/
algorithms using the API access or can simply be transferred to Kadi4Mat-hosted ML utilities and applications 
such as KadiStudio14, KadiAI and CIDS23. These features make Kadi4Mat the most appropriate infrastructure for 
the data management needs of complex investigations, like the showcase presented in this work.

In this work, we present a RWDM framework which is implemented for our recent numerical investiga-
tion on establishing PMP relationships during PBF process using Kadi4Mat24,25. During the RWDM process of 
this investigation, the crucial steps involved in the workflow, the identification, collection and organization of 
(meta)data, their recording and crosslinking to indicate the information flow, will be discussed. Ontology-based 
knowledge representation of the overall investigation using the records and capturing their relation pro-
motes further expansion and usage of the research database, as the relations are machine-readable and can be 
machine-actionable as well. Automation in the implementation of the proposed RWDM framework and the 
further usage of the curated data will also be discussed.

Results
RWDM infrastructure design.  The RWDM framework outlined in this study comprises of workflow 
(including simulation sub-routines) management, (meta)data identification and curation. The implementation 
of this framework is illustrated by curating the research workflow and the data generated from our recent works 
on multilayer PBF simulations24,25. The simulation workflow is explained in the methods section and is also vis-
ually summarized in Fig. 2(a). Sample results from this workflow are schematically displayed in Fig. 2(b1−5). 
The four-layer PBF process simulations using non-isothermal phase-field model results in the evolution of the 
thermo-microstructure containing the temporal information of the fused strut. Subsequent thermo-elasto-plastic 
calculations are performed to capture the evolution of residual stress and plastic strain in the thermal microstruc-
ture from the process simulations. The effective mechanical properties of the PBF processed microstructure are 
calculated using the computational homogenization method. As implied in Fig. 2(b), the research data generated 
during the multilayer PBF investigation was carefully collected, organized and stored into Kadi4Mat in form of 
records. Three distinct record types are utilized to curate the research data from the multilayer PBF work: (1) 
dataset, (2) protocol and (3) simulation records. From technical point of view, these various types of records are 
on the same level in the RWDM infrastructure. However, from managerial aspect, they are distinguished by their 
data content, as outlined in Table 1. The usage and integration of these different record types in this RWDM infra-
structure will be further discussed in detail in the following subsection.

An overview of the curated data from the multilayer PBF work can be seen in form of an ontology-based 
knowledge graph, in Fig. 3. The research workflow and data curated from multilayer PBF simulations consists of 
several records, indicated by circular nodes. These nodes can be seen arranged prominently, to visualize the child 
collections representing the three clusters of simulations: (1) phase-field simulations, (2) thermo-mechanical 
simulations and (3) computational homogenization. The records are labeled with their respective identifiers and 
the record types. The record type can also be identified by the node colors.

Data records design.  The dataset records, for example @mfm_materials_ss316l contains the 
temperature-dependent material properties of the material SS316L that were used for phase-field simulations, 
thermo-mechanical simulations and computational homogenization, as shown in Fig. 4(a3). Temperature 
dependent material properties of SS316L, such as, Poisson’s ratio, Young’s modulus, yield stress, plastic modulus 
and thermal expansion coefficient, employed in the thermo-mechanical anaylses and computational homoge-
nization simulations are stored in the metadata fields. Other material properties such as melting temperature, 
thermal conductivity, specific heat capacity, latent heat of fusion, diffusivities and mobilities, employed in the 
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phase-field process simulations are curated as well. The effective mechanical properties obtained from the compu-
tational homogenization simulations, such as Young’s modulus, bulk modulus, shear modulus and Poisson’s ratio, 
along with their process parameters (beam power and scan speed) and their resulting porosities are summarized 
in a CSV file attached to the dataset record. Protocol records, such as @inputfile_pf utilize the description 
field to document the workflow to generate input files with a new layer of deposited powder particles, as shown 
in Fig. 4(a1). This particular workflow involves several sub-routines, including: conversion of phase-field based 
microstructure to voxel based one, importing the voxelized microstructure into discrete element method (DEM) 
software (e.g., GeoDict26, YADE27), depositing a new layer of powder over the previously processed layer, export-
ing the center and radii information of the newly formed powder bed, and finally, using it to generate inputfile 
to process another layer of powder bed. The relevant metadata like software versions and powder characteristics 
are stored in the metadata field, while the supporting files like, macros and processing scripts are uploaded to 
the protocol record as attachments with their usage sufficiently documented in the description field. Simulation 
records store data related to simulations based on the IPO model. They include inputfiles, process parameters 
used in the simulations, and summarized output files. For phase-field simulations, simulation records such as @
pf_20-100 illustrated in Fig. 4(a2), contain inputfiles for each layer, process parameters and setup such as beam 
power, scan speed, powder bed characteristics, simulation domain size, and simulated variables defining the tran-
sient thermo-microstructure. Simulation records for thermo-mechanical simulations include their corresponding 
inputfiles, process parameters, and transient thermo-microstructure along with the localized stress and strain 
response. Temporal values of von Mises stress, stress components, as well as plastic strain and its components are  
stored in CSV files for each scanned layer. Simulation records for computational homogenization curate their 
respective inputfiles, process parameters as well as the components of stress and strain tensors, which were uti-
lized to calculate the stiffness tensor and thereafter, the effective mechanical properties.
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Fig. 2  Schematic of the research framework consisting of (a) Multiphysical simulation scheme for multilayer 
powder bed fusion simulations including paramterization for phase-field model, thermomechanical analysis, 
process parameter selection for PBF, powder bed parameters and deposition, process simulations using non-
isothermal phase-field model, thermomechanical analysis, RVE selection for homogenization of mechanical 
properties; (b) Curating the relevant (meta)data in form of several record types, namely simulation, dataset and 
protocol in Kadi4Mat, to be further used in data-driven analysis. Illustration of (b1−4) the simulation results 
stored in simulation records and (b5) data stored in form of dataset records.

Record type Data stored

Protocol Workflows, sub-routine, technical SOPs, relevant macros/scripts

Simulation Inputfiles, output files, relevant parameters

Dataset Material-specific parameters, data from secondary sources, aggregated output data

Table 1.  Types and the corresponding research (meta)data stored.
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Records on Kadi4Mat have persistent and unique identifiers that distinguish them and ensure efficient 
retrieval and management. Upon creation, records are automatically assigned with a numeric PID, which 
remains unchanged. However, users can assign unique alphanumeric identifiers to further distinguish the 
records. The nomenclature for these identifiers is chosen to concisely represent the content of the record, such 
as material properties or simulation setup and results. In case of dataset records, the identifier name reflects 
the type of data as well as the material system. The identifiers of protocol records represent the procedure doc-
umented within them. Data from the three types of simulations with varying process parameters is curated in 
form of simulation records. Their identifiers take the form @<type>_<P>-<v>, to represent the simulation 
type as well as the distinguishing process parameters, in this case, the beam power <P> and scan speed <v>. 
<type> is a placeholder for the simulation type. For instance, @pf_20-100 would represent the simulation 
record for a multilayer phase-field simulation with beam power 20 W and scan speed 100 mm s−1. Likewise, @
tep_20-100 and @homogen_20-100 would be the records for thermo-mechanical simulation and com-
putational homogenization respectively.

The interlinking of records represents the relationships between them and the data flow within them as 
shown in the edges connecting the nodes in Fig. 3. These linkages can be used to understand the overall sim-
ulation workflow. For instance, the protocol record @powder-bed-gen explains the procedure to generate 
the initial layer of powder bed. The centre and radii information of the initial powder bed is then exported to 
@inputfile_pf for generating the inputfiles to simulate the PBF process. @inputfile_pf also receives 
temperature-dependent material properties of SS316L alloy from the dataset record @mfm_materials_
ss316l. The inputfiles generated from @inputfile_pf is sent to the phase-field simulation records, which 
also store the simulated microstructures of the processed layers. @inputfile_pf adds another layer of 
powder on the previously processed microstructure and subsequently generates another inputfile and sends 

Fig. 3  Knowledge graph visualizing research data from multilayer PBF simulations, including phase-field 
simulations, computational homogenization, and thermo-mechanical analysis. The data is stored in various 
record types, such as simulation records, protocol records, and dataset records. The data flow within the records 
is also indicated.
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to the phase-field simulation records to process the PBF scan of new layer of powder. The transient thermo- 
microstructure is delivered to the thermo-mechanical simulation records, where the relevant inputfiles are sent by  
@inputfile_tep upon receiving the material properties from @mfm_materials_ss316l. Likewise, for 
the computational homogenization, the final microstructure is transferred by the phase-field simulation records 
and the inputfile is created by @inputfile_homogen to simulate the effective mechanical properties of the 
PBF processed parts with varying process parameters.

The research data curated from the aforementioned three simulation clusters is organised into collections on 
Kadi4Mat. Each collection is identified by the following identifiers: @pf_sls, @tep_sls and @homogen_
sls. These collections are published on Zenodo to boost the findability and accessibility of the curated research 
data. The Zenodo entries contain records in JSON, RDF, and PDF formats, along with their corresponding meta-
data and file uploads. This comprehensive approach ensures that the records are stored in both human-readable 
and machine-readable formats, therefore, increasing their interoperability.

Automation of data recording integrated with high-throughput simulations.  Collecting and 
managing (meta)data from high-throughput investigations is of paramount importance for its further analysis 
and potential data-driven studies, however it can be a daunting task, if not automated. An automated scheme 
integrating the data curation along with the reproducible workflows for high-throughput simulations is presented 
here. Automating the data collection step in a HTC workflow not only boosts the efficiency of a laboratory by 
eliminating the need for an intermediary (i.e. human operator), but also ensures consistency of the data records 
and compliance with the community-agreed FAIR data standards.

Figure 5 depicts a typical HTC workflow, implemented on a master Jupyter session, with sub-routine scripts 
executed on the worker computer via ssh and the seamless interaction with Kadi4Mat powered by KadiAPY. In 
a high-throughput investigation, batch simulations are performed with an array of combinations of processing 
parameters. The selection of process parameter combinations, often aided by design of experiments, is a critical 
step and depends on the processing window for the particular process and the process-material relationship. 
The process parameters and setup are normalized and formulated as metadata by the master console and are 
then fed into the inputfile composing scripts of the worker console along with the inputfile template pulled 

Fig. 4  Snapshot of different record types: (a1) Protocol record, (a2) Simulation record and (a3) Dataset record. 
These records along with other records form a collection as illustrated in (b).
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from the protocol records in data repository, to create batch inputfiles corresponding to the parameters. These 
inputfiles are submitted as batch jobs on the computing cluster. Meanwhile, the master console pulls simulation 
record template from Kadi4Mat repository to create empty records for each simulation with the parameter 
information as metadata. Simple Linux utility for resource management (SLURM) workload manager is used to 
submit the batch simulation jobs on the high-performance computing (HPC) cluster, which assigns each job a 
unique ID. Timed python scripts are used to check the status of the simulation jobs, completed jobs are verified 
for successful completion. The successful completion of a simulation job is verified by conducting at least two 
checks on different levels, i.e. the SLURM report generated using the job ID and the output log file from the 
corresponding simulation. The data from successfully completed jobs are further sent for processing, while the 
failed jobs are marked for error resolution. Most commonly occurring errors in the execution of simulation 
jobs often result from insufficient memory or wall time (time allocated in the job scheduler). The progress of a 
simulation is curated at particular timestep intervals using checkpoints. Checkpoints are essentially snapshots 
of the simulation data including meshes, solutions and stateful object data, which are used to resume prema-
turely terminated simulation jobs. Doing so prevents total loss of progress in case of failed simulation jobs 
and minimizes the wastage of computational resources. The error handling of failed simulation jobs require 
human intervention, but handling of common faults such as job cancellation due to calculation ran out of wall 
time could also be automated using dedicated workflow managers such as AiiDA28. The post-processed data is 
pushed to their corresponding simulation records on Kadi4Mat. The data is further analyzed and summarized 
into a dataset, which would serve as an end-result of the HTC investigation. This dataset is also pushed as a 
dataset record in Kadi4Mat and could be retrieved for further data-centric machine learning analysis. In this 
context, Kadi4Mat serves as a community repository as well as an ELN. Alternatively, the data could be directly 
fetched into Kadi4Mat’s ML workflow suite called KadiStudio14,23. KadiStudio has ML modules such as KadiAI 
and cids-tools to facilitate the development and implementation of data-driven models in ML workflows. These 
workflows can be documented as Kadi4Mat records to ensure their reproducibility.

Data transfer for machine learning.  Once the data is collected and summarized into datasets, it can be 
utilized for machine learning. Various ML algorithms can be employed based on the data and the desired objec-
tive. The selection of an appropriate ML algorithm would be directly affected by the amount and type of available 
data. As presented in Fig. 6(a), the summarized data from the HTC investigation stored as dataset records on 
Kadi4Mat, are pulled for further data-driven analysis using python-based KadiAPY commands. The fetched data 
is scaled and then split into training and testing datasets. The training dataset is used to train the selected ML 
model, simultaneously the model is tuned by optimizing the hyperparameters to improve the model accuracy, 
and the testing dataset is used to evaluate the employed ML algorithms. To demonstrate the utilization of sum-
marized dataset from a HTC investigation in data-driven analyses, data from 3375 simulations from a previous 
investigation based on phenomenological model of PBF is employed29. Figure 6(b) presents the schematic of the 
phenomenological PBF simulation30, where the thermal evolution in a homogenized powder bed is simulated 
during a single layer scan of PBF. The ML algorithms used to predict the fused track width from the various input 
parameters are multilayer perceptron (MLP) and gradient boosting (GB). Figure 6(c),(d) present the plot between 
the predicted fused track width with the ground truth for MLP and GB algorithms respectively, with their corre-
sponding R2 values of 99.53% and 98.77%, suggesting good model accuracy.

Fig. 5  Flowchart of integrated automation for performing high-throughtput simulation and post-processing 
together with RWDM framework.
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Discussion
The suggested RWDM framework was implemented for the simulation based multilayer PBF investigations. 
With respect to our investigations on PBF, a total of 47 records are curated in the collection @multilayer_
sls on Kadi4Mat, part of which is illustrated in Fig. 3, showcasing the interlinking and data transfer between 
these records. This collection includes 39 simulation records, 5 protocol records, 2 dataset records and a meas-
urement record. The description of each record is stored in the description field, which may explain the metadata 
fields and attachments, while the associated data is stored as attachments and additional supporting (or auxil-
iary) data is stored in the metadata fields. There are 16 simulation records each from the multilayer phase-field 
simulations and corresponding thermo-mechanical simulations, and 7 from the computational homogenization 
simulations. Standardization and consistency of the records was maintained by employing record templates. 
Python scripts based on KadiAPY library were used to create multiple records, making the framework capable of 
scaling up for even larger datasets, with the possibility of automating the data curation step, especially for HTC 
investigations. The current RWDM database for multilayer PBF studies can be expanded for an even wider range 
of processing parameters and can be extended to similar material systems.

As the temporal thermo-microstructure resulting from the process simulation was utilized as input in 
computational homogenization and thermo-mechanical analysis, they can be easily transferred for other 
multiphysics-multiscale investigations such as nanoparticle migration behavior during PBF31,32, influence of 
process parameters on the magnetic properties of AM produced parts33, thermal anisotropy in porous AM 
parts34. Data from the Kadi4Mat records can be exported in machine-readable formats such as JSON, and can 
be fetched automatically using KadiAPY scripts. The existing data can be extrapolated and utilized for further 
data-driven analysis as illustrated in Fig. 2(b). These studies could possibly optimize the fused strut geometry by 
manipulating the volumetric energy input, predict the part properties for a particular set of processing parame-
ters or tailoring the mechanical properties. Finally, reusing research data generated from computationally inten-
sive simulations for further investigation is a step towards sustainable research.

The data curated through this RWDM workflow could later on serve as reference learning material for 
bachelor and master’s degree students. Access to extensive research data can expedite the learning process for 
the students35. In conjunction with the learning process, access to a reference data would make it easier for 
other researchers to benchmark their simulation code and setup. The meticulously curated research workflow 
presented in this work underwent a rigorous test of reproducibility when a master’s student was tasked with 
replicating the results solely by adhering to the documented procedures. With minimal guidance, the student 
successfully executed the workflows and reproduced the results, demonstrating the robustness and accessibil-
ity of the framework. The framework can be customized and extended to fulfill the data management needs 
of various other research works, and could even facilitate collaboration within multiple levels of researchers. 
Principal investigators can initialize the customization of the RWDM framework by identifying the needs of 
their corresponding research projects. Followed by the breakdown of the project goals into tasks, and further 
breakdown into input, process and output components. These components can be managed using records, with 
detailed instruction of their usage along with automated macros/scripts in form of protocol records describing 
sub-workflows. Notably, it is important to set standards such as nomenclature of records, files and metadata 
descriptors, particularly in the case of collaborative research works. Upon customization of the framework, 
it can be implemented by research assistants/students or automated, especially for repetitive tasks, thereby 

Fig. 6  (a) Schematic for utilizing dataset records from Kadi4Mat for data-driven analyses. (b) Schematic of 
a phenomenological PBF simulation used to train models based on (c) multilayer perceptron (MLP) and (d) 
gradient boosting (GB) algorithms.
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accelerating the overall research workflow. Implementing a similar RWDM framework would be a necessity for 
large projects like inter-laboratory study (ILS) involving numerous researchers from various research institutes, 
dealing with wide processing windows and multiple material systems36.

Methods
Data generation: Simulation scheme and workflow.  In this section, the simulation methods used to 
simulate the evolution of microstructure and the mechanical quantities (like stress and strain) during PBF pro-
cessing are introduced. During PBF processing, a variety of complex physical phenomena occur that are crucial 
for developing an understanding of the process. These phenomena have a significant impact on the resultant 
morphology and properties. Some of these phenomena include thermal behavior (laser beam interaction with 
powder bed and associated heat transfer), phase transformation (like melting and solidification), mass transfer 
(through diffusion or advection), and grain coalescence and coarsening. Furthermore, the thermal expansion 
during the heterogeneous heating and cooling cycles, causing non-uniform thermal stresses in the powder bed 
during the processing, is also captured. These values have been employed to further calculate the evolution of 
residual stress and plastic strain in the simulation domain. The characteristic length and time used in the sim-
ulations is 1 μm and 1 μs, respectively. Even though most studies approximate homogeneous layers for their 
single-layer or part-scale multilayer models to analyze thermal history and mechanical response in additively 
manufactured parts37–39, this investigation employs powder-resolved layers to preserve the heterogeneity arising 
from the complex morphology of the powder bed. Due to the presence of stochastic voids in the powder bed, the 
local microstructure exhibits microscopic variations in the thermal profile, which influence the thermal stresses 
and the corresponding mechanical responses, such as plastic deformation and residual stress, during PBF pro-
cessing. These microscopic variations reveal significant physical aspects such as high thermal gradients in the 
necking regions of the powder bed, concentration of residual stress in the necking regions as well as between two 
subsequent layers. Furthermore, the homogenized properties obtained from these mesoscopic simulations are 
comparable to the experimental observations and/or part-scale model results. Based on our former research, a 
powder resolved non-isothermal phase-field model was employed to simulate the microstructural evolution and 
corresponding thermo-mechanical response, while considering the aforementioned physical phenonema during 
single-scan multilayer PBF processing of SS316L parts24,25,33,40.

The simulation scheme used to comprehensively investigate microstructural evolution and 
thermo-mechanical analysis is arranged in multiple stages, as shown in Fig. 2(a). It starts with the parame-
terization and normalization of quantities used by the simulation models, such as phase-field parameters, 
temperature-dependent material properties of SS316L and Argon atmosphere for thermo-mechanical analy-
sis, and the powder characteristics for powder bed deposition24,25. A process window was selected with varia-
tion of the two most important process parameters for PBF: Beam power and scan speed. The non-isothermal 
simulator (NIsoS) program based on the MOOSE framework is employed to implement the non-isothermal 
phase-field model using finite element method41. A simulation subdomain is selected and further imported into 
the thermo-elasto-plastic model and further into the computational homogenization scheme for calculating 
the mechanical quantities of the printed parts. The details of the models used and the simulation workflow is 
sufficiently reported in our previous works24,25,40.

Data sorting and organization.  Diverse multifaceted data is generated throughout the simulation work-
flow as explained in previous section. The generated data is categorized in three main clusters, each representing 
a simulation stage from the workflow: (1) Phase-field simulations, (2) Thermo-mechanical simulations and (3) 
Computational homogenization. Apart from the data generated from these simulations, there is a variety of sup-
porting metadata containing crucial information needed to reproduce these data. Therefore, it is imperative to 
identify, collect and organize the metadata from each stage of the simulations. Typical metadata for these sim-
ulations would be the material- and processing parameters, and their normalization, simulation setup (such as 
boundary conditions, initial conditions, numerical solver configuration, powder characteristics for the generation 
of powder bed, software versions, etc). Furthermore, a comprehensive documentation of the sub-routines entail-
ing the techniques and usage of software is necessary to achieve the reproducibility goal from the FAIR guiding 
principles4.

Data recording and linking.  The huge variety of data generated from the series of simulations during the 
multilayer PBF investigation is recorded and curated in manner that it follows the FAIR principles4. Kadi4Mat is 
employed to curate our research data in form of records. These records have various fields, such as title, identifier, 
description, metadata and file attachments to store the data and relevant metadata containing crucial informa-
tion about the stored data. The records are uniquely identified using an alphanumeric identifier and a persistent 
numeric identifier. Standardization and consistency among the records are maintained by creating templates, 
which were then used to create records to store data from simulations with varying process parameters. Kadi4Mat 
offers the capability to store data in various record types, such as simulation records, protocol records and dataset 
records, as listed in Table 1. Protocol records were used to document the sub-routines and/or standard operating 
protocols (SOPs) used for a particular task from the workflow. Dataset records, as the name suggests, were used to 
store datasets, for example, material properties of SS316L used in the multilayer PBF investigation. The organized 
data from each simulation cluster was documented in form of simulation records using python scripts based on 
KadiAPY. This ensured the scalability of our RDM framework by automating the data fetching and recording step 
to an extent. Linking of records with other records enables the visualization of data flow and exchange between 
the records, sometimes even depicting usage of particular data in the overall workflows.
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Accessibility and publishing of data.  The records created on Kadi4Mat have the capability of being 
shared with the researchers within the Kadi4Mat consortia of institutions. However, for sharing the data with 
researchers outside the consortia, the records can be exported in various formats, including PDF, RDF and JSON. 
The records are also exported on Zenodo and is linked to a digital object identifier (DOI), thereby making the 
data findable and accessible to all. Zenodo supports data storage of up to 50 GB per record. For datasets exceeding 
this limit, multiple Zenodo records can be created or a third party data repositories can be utilized.

Data availability
The authors declare that the data curated using the RWDM framework described in this study for our multilayer 
powder bed fusion investigations are available on Kadi4Mat under the collection @multilayer_sls with 
PID: 592. The summarized version of the dataset is published on Zenodo29,42.

Code availability
Source code for MOOSE-based application NIsoS and related utilities are available via the online repository 
bitbucket.org/mfm_tuda/nisos.git. The corresponding authors can be contacted for granting access. Exemplary 
python scripts, based on KadiAPY library, used to automate the data recording and fetching steps are available 
on Zenodo43.
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