Table 3 Comparative benchmark of SOTA 3D segmentation networks on CirrMRI600+  → T2W.

From: Large Scale MRI Collection and Segmentation of Cirrhotic Liver

Method

mIoU

Dice

HD95

Precision

Recall

ASDD

VNet18

68.98

70.01

35.67

69.98

70.56

7.18

Attention UNet19

68.72

79.18

37.87

79.99

83.21

7.53

SynergyVNet3D34

75.17

77.56

28.19

83.78

85.42

5.79

TransBTS35

62.80

74.88

43.73

76.69

79.75

8.18

UXNet3D36

72.11

82.16

32.01

84.83

83.68

6.00

TransUNet3D24

77.89

79.09

34.11

78.11

79.97

6.69

LinTransUnet23

80.08

82.11

26.01

84.21

86.17

5.98

SwinUNeTr21

79.89

81.21

32.78

80.05

81.10

6.19

nnUNet3D20

82.11

84.76

27.73

85.78

86.66

4.76

nnFormer3D22

83.42

86.47

25.92

87.67

88.02

4.04

nnSynergyNet3D34

83.01

86.51

24.19

85.66

87.01

3.96

  1. Bold shows the best performance while Italic is the second-best.