Table 4 Comparative benchmark of SOTA 2D segmentation networks on CirrMRI600+ → T2W 2D.
From: Large Scale MRI Collection and Segmentation of Cirrhotic Liver
Method | mIoU | Dice | HD95 | Precision | Recall | ASSD |
---|---|---|---|---|---|---|
UNet | 0.6772 | 0.6900 | 38.22 | 0.7112 | 0.7592 | 10.11 |
AttentionUNet | 0.7089 | 0.7288 | 36.19 | 0.7377 | 0.7689 | 9.28 |
nnUnet-2D | 0.7229 | 0.7418 | 34.56 | 0.7662 | 0.7999 | 8.78 |
Trasunet | 0.7219 | 0.7457 | 31.11 | 0.7447 | 0.7812 | 8.66 |
Synergynet | 0.7383 | 0.7592 | 30.94 | 0.7882 | 0.8222 | 7.55 |
MedSegDiff | 0.7489 | 0.7667 | 30.89 | 0.7789 | 0.8192 | 7.34 |