
1Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdata

Improving data sharing and
knowledge transfer via the
Neuroelectrophysiology Analysis
Ontology (NEAO)
Cristiano A. Köhler   1,2 ✉, Sonja Grün   1,3,4 & Michael Denker   1

Describing the analysis of data from electrophysiology experiments investigating the function of
neural systems is challenging. On the one hand, data can be analyzed by distinct methods with similar
purposes, such as different algorithms to estimate the spectral power content of a measured time
series. On the other hand, different software codes can implement the same analysis algorithm,
while adopting different names to identify functions and parameters. These ambiguities complicate
reporting analysis results, e.g., in a manuscript or on a scientific platform. Here, we illustrate how an
ontology to describe the analysis process can assist in improving clarity, rigour and comprehensibility
by complementing, simplifying and classifying the details of the implementation. We implemented
the Neuroelectrophysiology Analysis Ontology (NEAO) to define a vocabulary and to standardize the
descriptions of processes for neuroelectrophysiology data analysis. Real-world examples demonstrate
how NEAO can annotate provenance information describing an analysis. Based on such provenance, we
detail how it supports querying information (e.g., using knowledge graphs) that enable researchers to
find, understand and reuse analysis results.

Background & Summary
Neuroelectrophysiology is a common approach to investigate the function of the nervous system using elec-
trodes to measure electrical properties of neural tissue1–3. Several techniques to perform neuroelectrophysio-
logical recordings are available, such as intracellular recordings, recordings of single unit spiking activity, local
field potential (LFP) recordings, or electroencephalography (EEG), leading to a large body of available data4.
This diversity allows researchers to gain an understanding of the nervous system’s activity dynamics ranging
from individual cells5 to complex neural networks2,6,7. Deriving insights from these recorded signals requires the
careful analysis of such data, i.e., transforming the data into meaningful measures or visual representations. The
nature of such an analysis of neuroelectrophysiology experiments is often highly specialized and complex, such
that a detailed description of the data analysis process is essential for a reliable interpretation of the findings.

Achieving a detailed description of the processes involved in analyzing neuroelectrophysiology data must
consider three aspects. First, a given feature of the brain activity can be understood from the recorded data
using multiple analysis methods that are in part complementary and in part overlapping. The interpretation
of the results will depend on any strengths or caveats associated with the chosen method8,9. One example is
the investigation of brain oscillations using the power spectral density (PSD) of the signal recorded by an elec-
trode. There exist a number of distinct algorithms to compute the concept of a PSD estimate from a recorded
signal10–12. Although they all produce a similar measure (i.e., the power density for specific frequencies in the
signal), the interpretation of the values found for one particular frequency will depend on the features of the
algorithm, such as resolution and smoother estimates. Second, different software codes implement one spe-
cific analysis method. Revisiting the PSD computation as an example, several software toolboxes for data anal-
ysis can implement a method such as the one based on the Welch10 algorithm (Elephant13, MNE14, etc.; see

1Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany. 2RWTH Aachen University,
Aachen, Germany. 3Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany. 4JARA-Institute
Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany. ✉e-mail: c.koehler@fz-
juelich.de

Article

OPEN

https://doi.org/10.1038/s41597-025-05213-3
http://orcid.org/0000-0003-0503-5264
http://orcid.org/0000-0003-2829-2220
http://orcid.org/0000-0003-1255-7300
mailto:c.koehler@fz-juelich.de
mailto:c.koehler@fz-juelich.de
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-025-05213-3&domain=pdf

2Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

ref. 15 for a review). This may result in subtle differences in the final estimates depending on the toolbox used
even though the starting data is the same (see ref. 15 for an example comparing several toolboxes regarding
spectral analysis methods). Finally, neuroelectrophysiology recording techniques evolved over the years. Early
experiments using coarse field recordings (e.g., EEG and LFP) or isolating a few single neuronal units required
simple analysis methods (e.g., simple cross-correlations or spectral measures)1,16. Recent technical advances
such as multi-electrode arrays and high-density recording systems have allowed for the recording of hundreds
of neurons across many areas or for investigating oscillations across large networks6,17,18. This progress was
accompanied by increased complexity of the analytical methods designed to extract meaningful features from
complex and often high-dimensional data (some of the most recent developments are summarized in ref. 19,
ref. 20, and ref. 21). Therefore, gaining insights into the neuroelectrophysiology data analysis requires an unam-
biguous description of both the specific methodology and the software implementations, and it is essential to
systematically describe, standardize, and integrate the diverse and evolving methods used in electrophysiology
data analysis. Ambiguities in the description may hinder the interpretation of results and, consequently, the
understanding of the underlying neural processes. When methodological choices and the tools used are not
transparently reported or standardized, it becomes difficult to determine whether any observed effects reflect
neural phenomena or artifacts of the analysis pipeline (e.g., wrong choice of method or parameters or errors in
the software code). In addition, the lack of standardization complicates the comparison of results across stud-
ies. A clear example of two conceptually similar analysis approaches producing non-comparable results was
demonstrated for competing methods used to detect the onset of neuronal slow waves22. Overall, ambiguities
undermine the reliability and reproducibility of findings, which may limit drawing robust conclusions about the
function of the nervous system.

The use of formal ontologies may help to describe all the processes involved in the neuroelectrophysiology
data analysis in a manner that facilitates gaining insights into the results23–26. An ontology provides a framework
to organize the knowledge of a particular domain field by defining concepts and entities without redundancy
and ambiguity while providing semantically-enriched relationships27. Therefore, if the processes and results
associated with the analysis of neuroelectrophysiology data were represented using an ontology, they should be
comprehensible and traceable independent of the specific methodology or the analysis software and program-
ming language used. The use of an ontology to describe the analysis brings several advantages: (i) the adoption
of a unified vocabulary, (ii) the standardization of descriptions of the processes involved, and (iii) achieving
a machine-readable representation of the analysis separate from its realization as software code such that it is
possible to query information based on the research questions. The generic description of an analysis result will
therefore facilitate the FAIR-ness28 of analysis results by improving their findability and interoperability. In col-
laborative scenarios, an ontology will facilitate the knowledge transfer of shared results since each step during
the analysis can be annotated to identify their similarities and differences (see ref. 26 and ref. 25 for perspectives
on using ontologies in neuroscience and biomedical research).

Several ontologies that could be considered for the description of experimental data analysis are already
developed in biomedical sciences and biomedical research in general (OBI29, OBCS30, BRO31, EDAM32), or
more specifically for neuroscience (NIFSTD33, CNO34) and electrophysiology (NEMO35, OEN36, ICEPO37,
OBI_IEE38, and ref. 39). Complementing these efforts, the Metadata4Ing40 and REPRODUCE-ME41 ontologies
provide scaffolds for the description of scientific processing workflows. However, the existing ontologies lack
the specificity to describe electrophysiology data analysis, particularly in connecting the analysis methods with
their software implementations. They generally focus on broad terms and data collection rather than detailed
analysis methods, which allows only a coarse-grained and high-level description of the computational analysis
steps. Therefore, those ontologies are not explicitly tailored to describe the workflow required for analyzing
neuroelectrophysiology data in a conceptual and semantically rich manner. To address this gap, we present the
Neuroelectrophysiology Analysis Ontology (NEAO), which aims to define a unified vocabulary and standardize
the descriptions of the processes involved in analyzing neuroelectrophysiology data. We show its application in
real-world scenarios where the NEAO was used to annotate the provenance information from different analyses
and highlight how it can query information, facilitating finding and obtaining insights on the results.

Results
The Neuroelectrophysiology Analysis Ontology.  Overview of the NEAO model.  The design of NEAO
considers that the analysis of neuroelectrophysiology data is composed of a sequence of small atomic steps, each
performing one specific action to generate, transform or characterize a piece of data. For example, let us consider
a scenario of plotting the PSD of the LFP time series obtained from the recording of one extracellular electrode
implanted into a brain area and that was saved into a data file (Fig. 1). First, one may load the raw data from the
file into a data structure containing the voltage time series acquired by the recording equipment. The LFP is the
low-frequency component of the extracellular signal (here defined as below 250 Hz), and therefore a low-pass
filter with a cutoff frequency of 250 Hz is applied to obtain the LFP time series. Finally, the PSD is computed from
the filtered data, resulting in an array of values corresponding to the power density estimates for a set of frequency
values. This power spectrum may be plotted and saved to a file. In this toy example, each step takes some data as
input and produces data as output, and steps may be controlled by one or more parameters (e.g., the cutoff fre-
quency parameter of the filter step controls how the filtering is applied to the raw data).

We propose the NEAO model (Fig. 2a) to describe such a scenario. The NEAO ontology is built on the cen-
tral AnalysisStep class to model the atomic steps of the analysis. It represents any process that generates new
data entities (e.g., generating artificial LFP data) or performs specific operations aimed at extracting additional
information during the analysis using existing data entities. These include data transformations (e.g., filtering
the raw signal into the LFP) or the computation of new, derived data (e.g., obtaining the PSD from the LFP

https://doi.org/10.1038/s41597-025-05213-3

3Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

signal). In NEAO, many specific classes derived from AnalysisStep are defined to describe specific steps in the
analysis. The complete specification is available on the documentation page at http://purl.org/neao/steps.

Two further classes complete the core of the ontology model. The Data class represents information used
during the analysis and constitutes the inputs and outputs of the analysis steps. It can represent either data
obtained from biology in an electrophysiology recording (or equivalent data generated by a simulation) or the
generated or transformed data resulting from an analysis step. In the example of the computation of the PSD
from an electrode signal, the raw signal or filtered LFP time series, the array containing the resulting PSD, and
the plot are examples of the Data class. The AnalysisParameter class represents information that does not pro-
vide data to the step but changes its behavior when producing the output, for example, the 250 Hz low-frequency
cutoff in the filter step, which sets the bandwidth of the output signal.

Three properties model the relationships between the main classes. hasInput and hasOutput point to indi-
viduals of the Data class, representing data that was an input or output of the analysis step. In the example above,
the step where the filter was applied will have the raw time series as input and the filtered LFP signal as the
output. The usesParameter property points to an individual of the AnalysisParameter class and corresponds
to a parameter used by the analysis step. Several properties may be added to the entity representing a param-
eter to structure the information of the value. For instance, the parameter indicating the low pass filter setting
of 250 Hz could be represented with two properties, one storing the literal integer value 250 and another the
literal string with the unit “Hz”, making the value machine-readable. However, no specific properties for the
AnalysisParameter class are predefined in NEAO for that purpose, allowing the use of existing ontologies to
structure such information when applicable (e.g., QUDT42 for describing physical quantities).

The OWL source files of NEAO are divided into submodules, each associated with a single namespace.
Table 1 describes each module regarding the source file, namespace, and contents. The full documentation can
be accessed at http://purl.org/neao.

Solving ambiguities in descriptions with NEAO.  Each of the three main NEAO classes represents specific enti-
ties in the context of the analysis of neuroelectrophysiology data. However, a frequently encountered situation
when referring to the steps, data, or parameters of an analysis is the use of abbreviations or synonyms, which
may lead to ambiguity in the meaning of the names. One example is the abbreviation PSD, which refers to the
term power spectral density but is also often called a power spectrum. First, NEAO establishes a controlled
vocabulary when naming the class (e.g., PowerSpectralDensity is used to represent the power spectral density
data in the analysis). Second, NEAO adopts several annotation properties to structure extended information
about the concept modeled by a class. Every class is assigned one label, defined using the Simple Knowledge
Organization System43 (SKOS) annotation skos:prefLabel that defines a string literal with a human-readable label
that is the chosen term to refer to an individual of that class (e.g., for the PowerSpectralDensity class representing
the power spectral density data, the label is power spectral density). Every class also has one RDFS rdfs:comment
annotation providing the human-readable description of what the class represents in the context of neuroelec-
trophysiology data analysis. In addition, one or more string literals may be defined with the SKOS skos:altLabel
property to provide a set of alternative labels that represent synonyms usually referenced in the literature (e.g.,
spectrum). Finally, one or more string literals defining abbreviations used to refer to an individual of the class
may be defined by the abbreviation property defined in NEAO (e.g., PSD for the power spectral density). By this
approach, NEAO allows the use of those annotations to disambiguate the names while structuring and consoli-
dating the diversity of terms that may be present in the literature.

A second source of ambiguity is the implementation of a specific analysis method by different software
codes. For example, the Welch method to estimate the PSD is available in several open-source toolboxes to
analyze neuroelectrophysiology data (e.g., Elephant13, MNE14, NiTime44, FieldTrip45, BrainStorm46, Chronux47)
or even more general scientific environments or toolboxes such as MATLAB or the SciPy48 package for Python.
Therefore, the description must accommodate the ambiguity in the software implementation of the code asso-
ciated with the step. NEAO defines two main classes to structure this information: SoftwareImplementation

Fig. 1  Conceptual view of an example analysis of neuroelectrophysiology data. The analysis comprises a
sequence of atomic steps, each performing one specific action. This example analysis produces a plot of the
power spectral density (PSD) of the local field potential (LFP) obtained from a single extracellular electrode
recording. A series of four steps (blue rectangles) is executed sequentially, starting from a data file that stores
the signal obtained during the recording session. Data is loaded and low-pass filtered to extract the LFP, then
the PSD is computed and plotted, and the plot is saved to a file. Each individual step is associated with specific
input and output data elements (red rectangles). Notably, the data is transformed throughout the steps, and such
transformations may be controlled by specific parameters (green rectangle). In this example, the filtering step
used a low pass frequency cutoff parameter, which defines the LFP component of the electrode signal.

https://doi.org/10.1038/s41597-025-05213-3
http://purl.org/neao/steps
http://purl.org/neao

4Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

and SoftwarePackage (Fig. 2a). SoftwareImplementation represents the primary code source used to exe-
cute the analysis step. It takes any data input, performs the transformations, and generates the outputs.
SoftwarePackage represents a collection of software and aims to describe the bundling of distinct pieces of
code, such as in a toolbox providing multiple functionalities for analyzing neuroelectrophysiology data. The
SoftwareImplementation comprises two distinct subclasses representing the primary approaches of imple-
menting the code for the analysis step: Program and Function. Program represents a full script or a compiled
executable that the operating system can call to perform the analysis step (e.g., an executable that would read
a file, perform the computation of the PSD using the Welch method, and save a file with the PSD). Function
represents a smaller and reusable code that can be used as a building block when writing a more extensive pro-
gram that executes a sequence of steps in the analysis. For example, to compute a PSD using the Welch method,
one could write a Python script that imports the welch_psd function from the spectral module of the Elephant
package, which is executed at some point in the script. However, the script performs several additional steps, cf.,
Fig. 1. The details of SoftwareImplementation and SoftwarePackage individuals are provided through a set of
properties. For SoftwareImplementation, the property version defines the version of the program or function.
For Function, the nameInDefinition property defines the name used in the function declaration and that is
used within programs that use the function (e.g., the name after def in Python functions). For Program, the
programName property defines the program’s name as it is published. The SoftwarePackage individuals have
the packageVersion property to define the package version and packageName property to define the pack-
age name. Finally, the relationship between a SoftwareImplementation and a SoftwarePackage is established

Fig. 2  Core model used by the Neuroelectrophysiology Analysis Ontology (NEAO). (A) Each atomic step
in the analysis is represented by the AnalysisStep class (large blue rectangle). It is bound to data inputs and
outputs by the specific properties hasInput and hasOutput which point to elements of the Data class (large
red rectangle). The description of parameters that control the behavior of the analysis step is achieved by the
usesParameter property, which points to elements from the AnalysisParameter class (large green rectangle).
To describe the software implementation associated with the analysis step, the Function, Program, and
SoftwarePackage classes are used through specific properties, supporting the identification of the code (e.g.,
strings defining the function, program, and package names) and its version. To add an extended description
of the data associated with an analysis step, the DataRepresentation class supports detailing how a particular
input or output is represented (e.g., array, matrix, scalar value) and the ElectrophysiologySignalSource class
may be used to identify the source associated with the signal represented by Data (e.g., EEG, extracellular
recording, extracellular recording from a particular brain area). (B) Details about the literature associated
with an AnalysisStep class are provided by annotations using the hasBibliographicReference property, which
points to an individual of the BiRO BibliographicReference class, whose properties define a string with a textual
bibliographic citation, and the URI that allows reaching the bibliographic resource (e.g., a resolvable DOI URL).

https://doi.org/10.1038/s41597-025-05213-3

5Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

through the property isImplementedInPackage, and between the AnalysisStep and SoftwareImplementation
through the property isImplementedIn (Fig. 2a).

Another source of ambiguity are analysis steps for which multiple conceptually similar methods are available
that produce similar results. This methodological ambiguity can occur in two ways. The first is when a method
evolves such that the underlying algorithm or assumptions, and consequently the results, differ. For example,
the PSD estimation with the periodogram method has a high variance. To address this, Bartlett49 introduced
an improved approach by dividing the signal into non-overlapping segments, computing the periodogram of
each, and averaging the results. This reduced variance at the cost of frequency resolution. Building on Bartlett’s
method, Welch10 proposed another refinement by using overlapping segments and applying a window func-
tion to each segment before computing their periodograms. This improved the statistical stability and reduced
spectral leakage. Therefore, using the periodogram approach, each PSD estimation method allowed for better
control over the variance and frequency resolution tradeoff. Typically, the description of an analysis method
and its variations is associated with a specific publication. To address this source of ambiguity, NEAO provides
the hasBibliographicReference annotation property pointing to an individual of the Bibliographic Reference
Ontology (BiRO)50 biro:BibliographicReference class that aims to identify the bibliographic resource with the
details of the method represented by the class (Fig. 2b). The biro:BibliographicReference individuals are defined
with the DCMI Terms51 dcterms:bibliographicCitation property providing a string literal with the textual cita-
tion of the reference and a BiRO biro:references property pointing to another individual with an identifier that
allows reaching the resource (e.g., the URL with the DOI or the ISBN for a book). The bibliographic information
annotations structure the bibliographic description to allow reaching the detailed and unambiguous definitions
of the analysis performed in one step (in our example, disambiguating the Bartlett or the Welch approach to
compute a PSD).

A related type of methodological ambiguity is the case where conceptually distinct methods produce a
conceptually similar result. One example is the estimation of a PSD using the periodogram, multitaper11 or
wavelet-based52 methods. Although the former two are based on the Fourier transform of a time series, the mul-
titaper approach introduces additional steps to reduce noise in the estimate. In contrast, wavelet-based methods
obtain the estimates by a distinct mathematical formalism. Nevertheless, all three methods will produce similar
results, but their differences will translate into strengths and caveats that affect the final results. To address this
form of ambiguity, NEAO introduces the concept of groups of similar analysis methods, which will be discussed
in greater detail in the following section.

Grouping methods according to semantic meaning.  The classes defined by NEAO allow a fine-grained descrip-
tion of the steps, data, and parameters used during the analyses. However, when aiming to gain insights into a
given analysis, queries to its description using NEAO may be targeted to answer questions of a more general
nature. For example, describing a step as the computation of a PSD using the Welch method provides specific
details of what is performed in that analysis step (i.e., the specific method and associated parameters). If one is
interested in obtaining information on the existence of any PSD estimate in the analysis description, however,
individually querying for (all) specific methods that provide PSD estimates (e.g., multi-taper estimates, wave-
let estimates) would not be desirable as it requires expert knowledge regarding the set of all such methods. A

Module OWL source
Namespace
prefix Namespace URI Contents

Root neao.owl neao http://purl.org/neao#

Top-level grouping of the
files, importing all modules,
and defining the ontology
metadata, such as description
and version information.

Base base/base.owl neao_base http://purl.org/neao/base#
Top-level classes of the NEAO
model that are imported by
other modules.

Data data/data.owl neao_data http://purl.org/neao/data#
Subclasses of Data, defining
specific data entities and their
semantic groupings.

Steps steps/steps.owl neao_steps http://purl.org/neao/steps#
Subclasses of AnalysisStep,
defining specific analysis steps
and their semantic groupings.

Parameters parameters/parameters.owl neao_params http://purl.org/neao/parameters#
Subclasses of
AnalysisParameter, defining
specific parameters and their
semantic groupings.

Bibliography bibliography/bibliography.owl neao_bib http://purl.org/neao/bibliography#
Define individuals with the
bibliographic references used
to annotate AnalysisStep
classes.

Table 1.  Modular structure of NEAO. The core ontology model is implemented in a base module, and each
defined main class (AnalysisStep, Data, and AnalysisParameter) is expanded in individual modules. This
allows the definition of specific namespaces for the detailed classes derived from each of the three main
classes. Bibliographic information is defined in an additional module containing the individuals representing
bibliographic citations. A root module provides the main ontology metadata and binds all the modules.

https://doi.org/10.1038/s41597-025-05213-3
http://purl.org/neao#
http://purl.org/neao/base#
http://purl.org/neao/data#
http://purl.org/neao/steps#
http://purl.org/neao/parameters#
http://purl.org/neao/bibliography#

6Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

solution to this problem is to implement a class grouping all methods for computing a PSD, representing the
PSD estimation as a category of methods. Addressing this type of generalization is accomplished in NEAO using
two approaches.

First, the classes are organized in a taxonomy that uses superclasses to group semantically similar steps, data,
or parameters. The structure is chosen to maximize the separation between classes at the lowest levels of the
hierarchy. For instance, for the PSD estimation (Fig. 3a), there is the PowerSpectralDensityAnalysis superclass
that groups the atomic steps ComputePowerSpectralDensityWelch and ComputePowerSpectralDensityMultitaper,
each representing its respective method (and described with the proper annotations). This primary taxonomy
reflects mainly the algorithmic and technical description of the methods. However, this classification scheme in
itself is insufficient as the complexity of describing an analysis method may comprise more than one semantic
dimension.

In the following, we demonstrate the nature of such additional semantic dimensions as well as NEAO’s pro-
posed solution to introduce additional cross-cutting groups by means of an example. When considering time
series with recorded activity from two brain areas, the magnitude of their correlation in the frequency domain
can be estimated by computing the coherence8. In NEAO, the CoherenceAnalysis class groups many methods
to compute coherence. As a measure, coherence is part of a broader SpectralAnalysis class, as its computation
is based on estimations of the cross-power spectral density between two signals (i.e., the grouping is based on
the algorithmic approach). Therefore, it is possible to manually assert that CoherenceAnalysis is a subclass of
SpectralAnalysis, and this provides a relationship to the PowerSpectralDensityAnalysis that groups methods for
PSD estimation in a single time series (Fig. 3b).

However, switching to a different level of semantic description, one potential purpose of performing a
coherence analysis is to infer functional connectivity. This purpose can also be pursued using other methods,
e.g., cross-correlations in the time domain8. Therefore, we provide a class FunctionalConnectivityAnalysis to
group methods related by their similarity regarding the estimation of functional connectivity. Technically, this
is accomplished by employing a normalization with the Rector technique53 using the special property hasPur-
pose. The normalization approach uses equivalent class axioms, which define classes in terms of necessary and
sufficient conditions, often involving property restrictions (Fig. 3c). Property restrictions in OWL are logical
constraints that specify conditions such as what kinds or specific values a property must have. In NEAO, we used
the value restriction to state conditions where the hasPurpose property has particular values. These property
values are individuals from the AnalysisPurpose class, which is defined outside AnalysisStep and represents
specific purposes in the analysis. For example, the individual representing the purpose of estimating functional
connectivity is FunctionalConnectivityPurpose.

To implement the grouping, it is possible to have axioms asserting that CoherenceAnalysis is a subclass of
SpectralAnalysis in the primary taxonomy, but also a subclass of a (logically defined) class where the value of
hasPurpose is FunctionalConnectivityPurpose (i.e., coherence is a method of spectral analysis that is also used
to estimate functional connectivity). To complete the normalization, the class FunctionalConnectivityAnalysis
is defined as a subclass of AnalysisStep and equivalent to a class where the value of hasPurpose is
FunctionalConnectivityPurpose. With these logical definitions, the reasoner will automatically infer that the
methods grouped within CoherenceAnalysis are also subclasses of FunctionalConnectivityAnalysis.

The normalization approach facilitates the establishment of many cross-cutting semantic relationships
within NEAO. For example, as coherence and cross-correlation are methods related by their potential purpose
to estimate functional connectivity, classes such as CoherenceAnalysis and CrossCorrelationAnalysis are defined
in the primary taxonomy to group steps that compute coherence and cross-correlation, respectively (Fig. 3b).
However, both are also defined with the property restriction axiom stating that the value of the hasPurpose prop-
erty is FunctionalConnectivityPurpose (pink line in Fig. 3c). As the FunctionalConnectivityAnalysis class (pink
ellipse) is defined as equivalent to a class where the value of hasPurpose is FunctionalConnectivityPurpose, all
the classes representing methods in CoherenceAnalysis (dashed red line) and CrossCorrelationAnalysis (dashed
green line in Fig. 3c) are grouped by inference of the reasoner as classes from FunctionalConnectivityAnalysis
(Fig. 3c).

In a similar fashion, NEAO introduces additional non-asserted groupings using the normalization technique
to identify features common to methods in different branches of the taxonomy (cf., Fig. 3b). This includes time
vs. frequency domain, the directionality (directed vs. non-directed), or number of variables involved (bivariate
vs. multivariate). Additional properties for other equivalent class definitions are defined. For example, the isDi-
rected property defines the classes DirectedAnalysis (if the value is true; blue ellipse) and NonDirectedAnalysis (if
the value is false; orange ellipse in Fig. 3c). These axioms are also inserted in the definition of CoherenceAnalysis
(a non-directional estimate) and CrossCorrelationAnalysis (a directional estimate in the time domain), allowing
them to be further used to distinguish coherence from cross-correlation, as the former is inferred as part of
NonDirectedAnalysis and the latter is inferred as DirectedAnalysis. In the end, normalization allows the easy
expansion of NEAO to add semantic groupings according to the demands needed to extract relevant insight
from the description of the analyses.

Describing analyses composed by multiple substeps.  Some analyses might require the completion of a series
of smaller steps (substeps) to obtain the final results from the inputs. Each substep is associated with specific
parameters that determine the final output. One example is the Analysis of Sequences of Synchronous Events
(ASSET)54 method to detect neuronal activity patterns. ASSET aims to detect activity patterns where groups of
neurons fire in sequences that repeat in time (sequences of synchronous events; SSEs). A series of 5 substeps do
this: (i) representation of repeated synchronous activation (in the input spike data) as an intersection matrix,
(ii) assessment of the significance of matrix entries, (iii) masking of non-significant matrix entries, (iv) cluster-
ing of matrix entries using a DBSCAN approach, and (v) identification and extraction of the resulting clusters

https://doi.org/10.1038/s41597-025-05213-3

7Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 3  Grouping of classes describing analysis methods in NEAO. In these diagrams, classes asserted in the
main taxonomy are shown as rounded rectangles, and classes inferred using the reasoner are shown as ellipsis
shapes. The is-a relationship denotes a subclass relationship. The black triangles inside a class shape show
missing relationships, not shown for simplicity. (A) Example for the specific methods for computing a PSD to
illustrate the primary semantic groupings in NEAO. The methods are defined as classes at the lowest levels of
a taxonomy starting in AnalysisStep, and are described with proper annotations, including the bibliographic
resource where the method description was published. They are grouped in the PowerSpectralDensityAnalysis
class, a subclass of the more general SpectralAnalysis class (purple). (B) The grouping of coherence and
cross-correlation measures exemplifies how NEAO’s taxonomy organizes the diversity of analysis methods
with a maximum separation regarding their semantic meaning. The classes CoherenceAnalysis and
CrossCorrelationAnalysis define separate branches in the taxonomy. They group methods to compute either
coherence measures (red shades) or cross-correlation measures (green shades), respectively. Mathematically,
coherence is the normalized magnitude of the cross-power spectral density between two signals. Therefore,

https://doi.org/10.1038/s41597-025-05213-3

8Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

to obtain the SSEs. Each of these substeps is associated with a set of parameters. Therefore, the description of
an analysis of spike data using ASSET could be achieved in two levels of granularity. At the highest level, each
substep is atomic concerning the model defined in NEAO, with individual data inputs/outputs and parameters
for each intermediate step. However, considering only the main inputs (i.e., the spike trains) and outputs (i.e.,
the list of detected SSEs), the analysis could be described as the neural activity pattern detection method ASSET
that used a set of input spike data and produced a set of SSEs as outputs. This poses a challenge in attributing
semantic meaning to analysis steps since, for example, the intermediate step of computing a matrix in ASSET is
not a neuronal activity detection pattern method, but only the whole process with all the five substeps.

To allow the description of such analyses with multiple substeps while retaining the semantic mean-
ing of the compound process, the hasSubstep property is defined in NEAO. hasSubstep is used to link
two individuals of the AnalysisStep class (Fig. 2a). For ASSET, NEAO defines the ASSETAnalysisSubstep
superclass in the primary taxonomy to group all classes representing the computation of the intermedi-
ate substeps (i)–(v) in the ASSET analysis. A distinct class ExecuteASSETAnalysis is defined as a subclass of
NeuronalActivityPatternDetectionAnalysis. The latter is the main superclass in the primary taxonomy to
group several semantically related methods to detect patterns in neuronal activity (e.g., SPADE, CAD). The
ExecuteASSETAnalysis class has a restriction to identify that individuals of this class have elements from
ASSETAnalysisSubstep as possible values for the hasSubstep property. The hasSubstep property is also used to
define a generic CompoundAnalysis class that identifies if any individual of the AnalysisStep class represents an
analysis process composed by multiple substeps, such as ExecuteASSETAnalysis). In this way, complex analyses
such as ASSET with multiple intermediate steps and data outputs can be modeled and inferred using NEAO at
multiple levels of granularity to retain proper semantic information.

Source information on the data.  Although the objective of NEAO is not to model the data acquisition or
to provide a more detailed description of the source and format of the data used in the analysis, two classes
are defined as abstractions to structure additional information on the entities of the Data class (Fig. 2a). The
ElectrophysiologySignalSource class can be used to define individuals that structure details concerning the
data source. For example, this could be used as a base to describe the technique (e.g., EEG or extracellular
recording), the recording channel, or the anatomical structures. This could be part of future expansions of
NEAO or as a base to align other ontologies suitable for data and metadata descriptions (e.g., EDAM). The
DataRepresentation class can provide additional information on how the data is structured, which is rele-
vant for interpreting the analysis. For example, computing the Pearson correlation coefficient between a pair of
binned spike trains in one analysis step will produce a single scalar value. However, that analysis step might also
take a collection of binned spike trains, and the output of the step is the coefficient for all pairwise combinations
and outputs the coefficients in the form of a matrix. Therefore, it is possible to use the DataRepresentation as a
base to structure this additional level in the analysis description.

Competency questions.  Several competency questions are addressed with the model NEAO defines and pre-
sented above. They are summarized in Table 2.

Example of annotation of RDF using the NEAO.  Figure 4 shows an example of how the filtering and
PSD computation steps illustrated in Fig. 1 could be described in RDF using NEAO elements, assuming that these
steps in the analysis used the implementation available in the software library Elephant version 0.14.0. It is possi-
ble to add detailed semantic information to each analysis step with its associated inputs/outputs and to structure
the parameter descriptions and the software implementation details.

Practical application of NEAO: annotating provenance information.  We considered three repre-
sentative analysis scenarios as examples to demonstrate how the semantic information provided by NEAO can
be used to facilitate describing and understanding the analysis of electrophysiology data. One Python script was
implemented for each analysis scenario. These scripts process or generate data and save outputs into a folder. In
brief, the analysis scenarios consisted of the following:

•	 Analysis 1: for each trial in an experimental recording session, plot the power spectral densities of the LFP
time series of each recording electrode;

•	 Analysis 2: for correct trials in a recording session, plot the interspike interval (ISI) histogram (ISIH) of
spike train surrogates55 obtained from selected neurons (single unit activity data obtained after spike sorting)
together with the ISIH spread;

•	 Analysis 3: generate artificial data using either a homogeneous Poisson or a homogeneous gamma process,
and plot the ISIHs with a measure of ISI variability.

CoherenceAnalysis is a subclass of SpectralAnalysis (purple) to express the algorithmic and technical
similarities to other methods such as those shown in (A). (C) Grouping to represent additional semantic
dimensions is obtained using the Rector normalization for the examples in panel B. Left: class hierarchy and
relationships explicitly defined with subclasses (round rectangles and solid lines) and those inferred with the
reasoner (ellipses and dashed lines). Right: definition of each class in terms of axioms. The diagram shows the
complementary nature of the classes and relationships asserted in the main AnalysisStep taxonomy.

https://doi.org/10.1038/s41597-025-05213-3

9Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

The scripts for Analysis 1 and Analysis 2 were implemented in multiple versions in which one function was
changed during the analysis. In the 3 versions of Analysis 1, this was the function to calculate the power spec-
trum, and in the 2 versions of Analysis 2, this was the method to generate surrogate artificial spiking data. Each
script version saved the respective output plots in different subfolders of a main results folder, simulating a situa-
tion of a shared folder that collects results from different analyses. This folder is accessible through the repository
with the code accompanying this paper (/outputs/analyses)56. Table 3 summarizes each analysis scenario and the
subfolder and file structure used to store the results.

The scripts were instrumented with the software Alpaca to capture detailed provenance throughout the anal-
yses. Alpaca is a Python toolbox that produces a structured record of all the operations performed within the
analysis script57. The details about the function executions, their parameters, and data inputs/outputs are saved
as a graph in RDF using an ontology derived from the W3C PROV-O. The data from the RDF files were inserted
into a knowledge graph, allowing the query of the provenance information using the SPARQL graph-based
query language58. The raw outputs of SPARQL queries presented in this paper are available as CSV files accessi-
ble at the Zenodo repository with the code accompanying this paper (/outputs/query_results)56. All queries are
made to the complete graph containing provenance information of Analyses 1–3 (including the 3 versions of
Analysis 1 and the two versions of Analysis 2 as described above).

Table 4A presents an example query for the stored provenance information illustrating the type of infor-

mation that can be extracted without the use of NEAO. This query lists the file paths of all those output files
that were derived from a specific input file i140703-001_no_raw.nix to the script (going backward through the
sequence of functions executed until the plot was saved). Aggregating the table by the folder where the file is
stored (Table 4B), it is clear that this corresponds to all files output from Analyses 1 and 2 (in which the exper-
imental data file i140703-001_no_raw.nix was used), but not Analysis 3 (where data was artificially generated).

Class Example of competency question

AnalysisStep

Which steps were used in the analysis?

Did the analysis use [specific method] as a step?

Did the analysis use [category of method] as a step?

Data

What data was input/output to a step in the analysis?

Did the analysis produce [specific data] as input/output from a step?

Did the analysis use [category of data] as input/output from a step?

AnalysisParameter

What are the parameters for the steps in the analysis?

What are the parameters of [specific method] used in the analysis?

What is the [specific parameter] of [specific method] used in the analysis?

What are the parameters of [category of method] used in the analysis?

SoftwareImplementation

What software/code implemented a step in the analysis?

What software/code implements [specific/category of method] used in the analysis?

What is the version of the software/code of a step in the analysis?

SoftwarePackage

What package contains the software/code of a step in the analysis?

What package contains the software/code of [specific/category of method] in the analysis?

What is the package version that contains the software/code of [specific/category of method] in the analysis?

BibliographicReference
What is the bibliographic source of [specific method]?

What are the bibliographic sources of [category of method]?

ElectrophysiologySource
What neural source does data contain?

Did a step use data from [specific source]?

DataRepresentation
How is data input/output of a step in the analysis represented?

Is data input/output of a step represented as [specific representation]?

Table 2.  Examples of competency questions addressed by NEAO. The classes and properties defined by the
ontology are intended to identify the atomic steps used throughout the analyses, together with their data and
parameters. Questions may inquire about specific methods, data, or parameters. For example, we can cite the
computation of a PSD using the Welch algorithm (specific method), the CV2 interspike variability measure
obtained by a corresponding analysis (specific data), and a low-pass cutoff for a filter (specific parameter). The
ontology also provides the ability to query about a category of methods, data, or parameters. As examples, we
can cite PSD analyses (for which the Welch is one of multiple possible), spike interval statistics (for which the
CV2 value is one of multiple possible), and filtering parameters (for which a low-pass cutoff is one possibility).
Moreover, the ontology intends to support the description of the software implementing each step in the
analysis (associated with a specific or a category of methods), with classes and properties to structure the
function, program, and software package information (name and versions). NEAO also aims to aid in inquiring
about the literature sources associated with a category or specific methods, and the source and representation of
data throughout the analysis.

https://doi.org/10.1038/s41597-025-05213-3

1 0Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Table 4C shows the result of a different query listing all the files saved by a script (also aggregated by the file
folder). This second query identifies all files saved by any of the three analysis scripts.

To incorporate the semantic information introduced by NEAO, additional relationships according to the NEAO
model were added to the graph containing the provenance information. These relationships were based on the
contents of the provenance RDF triples captured by Alpaca annotated with NEAO classes (details are given in the
Methods). In this way, function executions in the script and the associated data input, outputs and parameters are
related to specific classes defined in NEAO. For example, the elephant.spectral.welch_psd used in Analysis 1.1 and
scipy.signal.welch used in Analysis 1.3 are associated with the ComputePowerSpectralDensityWelch class, while the
elephant.spectral.multitaper_psd used in Analysis 1.2 is associated with the ComputePowerSpectralDensityMultitaper
class. By doing so, it is possible to use NEAO classes and relationships in the queries and make inferences on the cap-
tured provenance using the extended semantic information provided by NEAO. This will provide a more descriptive
and generic representation of the provenance of those files, which will be explored in the following sections.

Overview of the analysis results.  SPARQL queries can use the information provided by NEAO to answer over-
view questions regarding the provenance of the results produced by the three analyses. These queries can either
list the analysis steps involved in generating a result file or identify subsets of the results according to specific
steps in the analysis. In the following, we list human-comprehensible questions to the knowledge contained

Fig. 4  Using NEAO to describe steps in the analysis of neuroelectrophysiolgy data. In this example, the
filtering and power spectral density (PSD) computation steps of the example from Fig. 1 are represented as
an RDF graph. The data and analysis step nodes from the example are represented by ellipses (red and blue,
respectively), identified by a URI. NEAO properties hasInput and hasOutput are used to connect each data
node to the respective step, and describe it as either an input or output. To add semantic information, each
node is associated with a specific Data (red rectangles) or AnalysisStep class (blue rectangles) defined by
NEAO via the rdf:type property (thick dark blue arrows, abbreviated as a). Note that each analysis step can be
easily understood for the method used, as each is associated with a specific class representing the concept of
the step in NEAO (i.e., the filter is a Butterworth type filter, and the computation of the PSD used the Welch
algorithm). The details of the data transformations are also visible, as the filtering step transformed a time series
into another time series. At the same time, the PSD computation generated a new conceptually distinct data
entity from the input time series (i.e., the power spectral density), which is represented by a different class. The
details of the software implementing the two steps are specified through the isImplementedIn property (light-
blue arrows). Each used a function, as the nodes are associated with the Function class for type description.
Both were implemented in the Elephant package version 0.14.0, as the isImplementedInPackage property
points to a node of the SoftwarePackage class, whose properties define the package name and package version
(values in the grey rectangles with dashed borders). Finally, the specification of the parameter used by the
Butterworth filter is provided by the usesParameter property (green arrow). The node is associated with an
AnalysisParameter class to explicitly define the parameter as a low-pass frequency cutoff (green rectangle),
whose value was 250 Hz (grey rectangle with dashed border, defined by the rdf:value property). Grey circles
represent RDF blank nodes (i.e., nodes not explicitly identified by a URI, but unnamed). Blank nodes can be
used to create property values that consist of the information provided by the group of properties defined for
the blank node. In this example, the blank node representing Elephant can be interpreted as “a software package
whose name is Elephant and version is 0.14.0”.

https://doi.org/10.1038/s41597-025-05213-3

1 1Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

in the provenance information of our three analysis scenarios, and demonstrate how these can be solved via a
corresponding query.

Which steps were performed to generate a result file? For each result file, it is possible to identify any
function execution in the sequence that generated the data saved in the file. These function executions were
annotated with NEAO AnalysisStep classes. Table 5A shows the query output, where specific analysis steps
represented by classes in NEAO are listed for each file. To get a summary, the resulting table was aggregated to
obtain counts of each class per output folder (Table 5B). This shows that: (i) files in the subfolders psd_by_trial*
(Analysis 1) had Butterworth filtering, downsampling, and a step that computed a PSD (although with different
methods); (ii) files in subfolders surrogate_isih_* (Analysis 2) had steps that computed ISIs and ISIHs, calculated
sums, means and standard deviations, and generated spike train surrogates (with different methods); and (iii)
files in the folder isi_histograms (Analysis 3) had steps to generate spike trains (with different methods), compute
ISIs and ISIHs, and calculated the interspike interval variability measure CV2. Overall, this query indicates the
primary processes used to produce the results stored in each file and corresponds to the overview description
presented in Table 3. Knowledge of the functions and programming language used in scripts is not required.
In addition, this query does not distinguish the different implementations of the Welch algorithm by different
software tools in Analysis 1.

Which files contain PSD results? To identify all files with PSD results, it is possible to execute a query to
check which files stored data identified with the NEAO PowerSpectralDensity class and which were the output
from the execution of a function annotated with a member of the PowerSpectralDensityAnalysis grouping class
(e.g., ComputePowerSpectralDensityWelch). In NEAO, the PowerSpectralDensityAnalysis class encompasses all
methods to compute a PSD. Table 6A shows the aggregation of the query results by output folder (the results
before aggregation are shown in Table S1). Only the folders psd_by_trial* are shown now, as they store the results
from Analysis 1 that performed the PSD analysis. The grouping class PowerSpectralDensityAnalysis allowed the
identification of the three result sets regardless of the computation method (Welch or Multitaper) used.

Which files contain ISIH results? To identify all files with ISIH results, it is possible to execute a query
to check which files stored data identified with the InterspikeIntervalHistogram class and which were the out-
put from the execution of a function annotated with the ComputeInterspikeIntervalHistogram class. Here, the
ComputeInterspikeIntervalHistogram class represents specifically the computation of an ISIH in NEAO. Table 6B
shows the aggregation of the query results by output folder (non-aggregated results are shown in Table S2). Only
the folders surrogate_isih_* and isi_histograms are shown, as they store the results from Analyses 2 and 3, which
are the two analysis scenarios computing ISIHs. In contrast to the previous question for the PSD results, this
query considers the specific class ComputeInterspikeIntervalHistogram representing the step of computing an
ISIH instead of a class grouping similar steps, such as PowerSpectralDensityAnalysis.

Which files used artificial data? To identify all results that used artificial data as a source for the result, it is
possible to execute a query to check if the actual data saved in the file is derived from data that is the output of
a function execution that generates artificial data. In NEAO, this is represented by the ArtificialDataGeneration
class. Table 6C shows the aggregation of the query results by output folder (non-aggregated query result is shown
in Table S3). Only the folders starting with isi_histograms are shown, as they store the results from Analysis 3,
which generated artificial spike trains for the computation of the ISIHs.

Analysis Description Output folder File name

1.1 PSD computation using the Welch method in the Elephant toolbox / reach2grasp / psd_by_trial / [session] [trial ID].png

1.2 PSD computation using the multitaper method in the Elephant toolbox / reach2grasp / psd_by_trial_2 / [session] [trial ID].png

1.3 PSD computation using the Welch method in the SciPy toolbox / reach2grasp / psd_by_trial_3 / [session] [trial ID].png

2.1 ISI histograms of spike train surrogates obtained from experimental
data using the uniform spike dithering method / reach2grasp / surrogate_isih_1 / [session] [unit ID].png

2.2 ISI histograms of spike train surrogates obtained from experimental
data using the trial shifting method / reach2grasp / surrogate_isih_2 / [session] [unit ID].png

3 ISI histograms of spike trains generated by stationary Poisson or
gamma processes / isi_histograms [spike train index].png

Table 3.  Overview of the analysis scenarios presented as use cases for NEAO. Three main analyses were
implemented: (1) computation of PSDs of LFPs, (2) ISI histograms (ISIHs) of surrogate spike trains obtained
from the data available in one dataset of the Reach2Grasp experiment (i140703-001_no_raw.nix), and
(3) computation of ISIHs of artificially generated spike trains. Outputs of Analyses 1 and 2 that used the
Reach2Grasp experimental dataset were grouped inside the folder reach2grasp, while the outputs of Analysis
3 were stored in the separate folder isi_histograms. For Analyses 1 and 2, variants of the analysis were
implemented (three for Analysis 1 and two for Analysis 2), and each variant stored the results in distinct
subfolders (psd_by_trial* for Analysis 1 and surrogate_isih_* for Analysis 2). In the folder structure, [session]
corresponds to the session identifier in the Reach2Grasp experiment (i140703-001; subject N, recordings from
July 3rd, 2014, first recording session of the day). In the file names of outputs in scenarios 1 and 2, [trial ID] is
the trial identification number (obtained from the annotations of the behavioral events stored in the data file),
and [unit ID] is the identifier of a single putative neuron assigned to the data object containing the single-unit
neuronal spiking activity after spike sorting. In the file names of outputs in scenario 3, [spike train index] is
the index of the spike train in the list where they were stored after their generation in the script. All queries
presented as use cases are based on the full set of results obtained from Analyses 1–3.

https://doi.org/10.1038/s41597-025-05213-3

1 2Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

In-depth queries for Analysis 1.  As outlined above, Analysis 1 produced three distinct subsets of results
(referred to here as Analysis 1.1, Analysis 1.2, and Analysis 1.3, each stored in a different subfolder inside the
main reach2grasp folder: psd_by_trial*; Table 3). From visually inspecting these files (Fig. 5), it is clear that the
results produced by Analysis 1.2 are distinct from the results of Analysis 1.1 and 1.3, which themselves appear
very similar to each other. We now introduce SPARQL queries building on the query we used previously to
identify the results associated with a PSD analysis (Table 6A) in order to unravel the specific differences leading
to the three sets of PSD analyses.

Which method was used to compute the PSD plotted in each file? It is possible to query the specific sub-
class of PowerSpectralDensityAnalysis used to annotate the function execution that computed the PSD stored in
each file. Table 7A shows the aggregation of the query results by output folder. The query identifies that all files
from the folders of Analysis 1.1 and 1.3 used the Welch method for computing the PSD (represented by the class
ComputePowerSpectralDensityWelch in NEAO), while all files from the Analysis 1.2 folder used the multitaper
method (represented by the class ComputePowerSpectralDensityMultitaper in NEAO).

In which software package is the method to compute the PSD implemented? To better understand the
difference between the results from Analyses 1.1 and 1.3, which both used the Welch method, we use NEAO
properties to identify the software package information that is associated with the function used to compute the
PSD stored in each file. This information is accessible by the isImplementedIn and isImplementedInPackage
properties. Table 7B shows the aggregation of the results of this query by output folder. The query listed the name
and version of the packages using the NEAO properties packageName and packageVersion. It is apparent that
for results produced by Analyses 1.1 and 1.3, although the same PSD computation method was used, the soft-
ware code containing the implementation of the step differed: Elephant for Analysis 1.1 or SciPy for Analysis
1.3. In addition, we can infer that the multitaper method used in Analysis 1.2 was implemented in Elephant.

A

Input dataset file path Output plot file path

…/i140703-001_no_raw.nix …/reach2grasp/psd_by_trial/i140703-001/1.png

…/i140703-001_no_raw.nix …/reach2grasp/psd_by_trial/i140703-001/10.png

…/i140703-001_no_raw.nix …/reach2grasp/psd_by_trial/i140703-001/100.png

(omitted 486 lines)

…/i140703-001_no_raw.nix …/reach2grasp/surrogate_isih_2/i140703-001/Unit 59001.png

…/i140703-001_no_raw.nix …/reach2grasp/surrogate_isih_2/i140703-001/Unit 6002.png

…/i140703-001_no_raw.nix …/reach2grasp/surrogate_isih_2/i140703-001/Unit 7001.png

B

Output plot root file path File count

reach2grasp/psd_by_trial 160

reach2grasp/psd_by_trial_2 160

reach2grasp/psd_by_trial_3 160

reach2grasp/surrogate_isih_1 6

reach2grasp/surrogate_isih_2 6

C

Output plot root file path File count

isi_histograms 200

reach2grasp/psd_by_trial 160

reach2grasp/psd_by_trial_2 160

reach2grasp/psd_by_trial_3 160

reach2grasp/surrogate_isih_1 6

reach2grasp/surrogate_isih_2 6

Table 4.  The provenance information in the knowledge graph provides a generic overview of the files stored in
the analysis output folder. (A) Result of a SPARQL query listing files (output plots) that saved data derived from
another file (input dataset). The query lists the paths of the input dataset and the output plot. This identifies files
for which the experimental dataset i140703-001_no_raw.nix was used. The full path strings were truncated to
facilitate the visualization, and only 6 of 492 lines are shown. (B) Aggregation of table A to show the distribution
of files according to the file path root. 160 plots were generated by each of the 3 scripts that implemented a PSD
analysis using i140703-001_no_raw.nix in Analysis 1 (psd_by_trial* subfolders), and 6 files were generated by
each of the 2 scripts that plotted ISIHs from surrogates obtained from the spike data in i140703-001_no_raw.
nix in Analysis 2 (surrogate_isih_* subfolders). All subfolders are stored in reach2grasp, as this folder groups
all analyses that used the experimental data in i140703-001_no_raw.nix. (C) Aggregation of the results from a
second query identifying any file that contains saved data. This identifies output files from all the scripts (i.e., the
files already identified in table B in addition to 200 files produced by the script that plotted ISIHs of artificially
generated spike trains in Analysis 3). Note that the ISIH plots derived from artificial data are stored in the
separate isi_histograms folder.

https://doi.org/10.1038/s41597-025-05213-3

13Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

A

File path NEAO step class

…/isi_histograms/1.png neao_steps:ComputeCV2

…/isi_histograms/1.png neao_steps:ComputeInterspikeIntervalHistogram

…/isi_histograms/1.png neao_steps:ComputeInterspikeIntervals

…/isi_histograms/1.png neao_steps:GenerateStationaryPoissonProcess

…/isi_histograms/10.png neao_steps:ComputeCV2

(omitted 2302 lines)

…/reach2grasp/surrogate_isih_2/i140703-001/Unit 7001.png neao_steps:ComputeInterspikeIntervalHistogram

…/reach2grasp/surrogate_isih_2/i140703-001/Unit 7001.png neao_steps:ComputeInterspikeIntervals

…/reach2grasp/surrogate_isih_2/i140703-001/Unit 7001.png neao_steps:ComputeMean

…/reach2grasp/surrogate_isih_2/i140703-001/Unit 7001.png neao_steps:ComputeStandardDeviation

…/reach2grasp/surrogate_isih_2/i140703-001/Unit 7001.png neao_steps:GenerateTrialShiftingSurrogate

B

NEAO step class

File count per root file path

reach2grasp/
psd_by_trial

reach2grasp/
psd_by_trial_2

reach2grasp/
psd_by_trial_3

reach2grasp/
surrogate_isih_1

reach2grasp/
surrogate_isih_2

isi_
histograms

neao_steps:ApplyButterworthFilter 160 160 160 0 0 0

neao_steps:ApplyDownsampling 160 160 160 0 0 0

neao_steps:ApplySum 0 0 0 6 6 0

neao_steps:ComputeCV2 0 0 0 0 0 200

neao_steps:ComputeInterspikeIntervalHistogram 0 0 0 6 6 200

neao_steps:ComputeInterspikeIntervals 0 0 0 6 6 200

neao_steps:ComputeMean 0 0 0 6 6 0

neao_steps:ComputePowerSpectralDensityMultitaper 0 160 0 0 0 0

neao_steps:ComputePowerSpectralDensityWelch 160 0 160 0 0 0

neao_steps:ComputeStandardDeviation 0 0 0 6 6 0

neao_steps:GenerateStationaryGammaProcess 0 0 0 0 0 100

neao_steps:GenerateStationaryPoissonProcess 0 0 0 0 0 100

neao_steps:GenerateTrialShiftingSurrogate 0 0 0 0 6 0

neao_steps:GenerateUniformSpikeDitheringSurrogate 0 0 0 6 0 0

Table 5.  Annotation of the provenance information with NEAO identifies the main steps used to generate the
results in each analysis. (A) Result of a SPARQL query listing, for each file saved in the analyses output folder,
any class derived from AnalysisStep that was used to annotate the execution of a function that was part of the
sequence of function executions used to generate the result file. The full path strings were truncated to facilitate
the visualization. The prefix of the full IRIs of the NEAO step classes returned by the query was substituted by
the namespace according to Table 1. (B) Aggregation of table A to show the distribution of result files according
to the path root (columns) that used a step identified by a particular class (rows). For each result file set, it is
possible to identify particularities and commonalities across the steps taken by each analysis.

A

Root file path File count

reach2grasp/psd_by_trial 160

reach2grasp/psd_by_trial_2 160

reach2grasp/psd_by_trial_3 160

B

Root file path File count

isi_histograms 200

reach2grasp/surrogate_isih_1 6

reach2grasp/surrogate_isih_2 6

C

Root file path File count

isi_histograms 200

Table 6.  Annotation of the provenance information with NEAO identifies results with specific content.
SPARQL query result rows were aggregated according to the root in the file path. Based on NEAO, each query
listed files (output plots) that contain power spectral density estimates (A), interspike interval histograms (B),
or results obtained from artificially generated data (C).

https://doi.org/10.1038/s41597-025-05213-3

1 4Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Are the parameters equivalent for plots that used the same PSD method? The software implementations
of Analysis 1.1 (Elephant) and 1.3 (SciPy) have distinct parameters to control the application of the Welch algo-
rithm to the input data, such that evaluating the equivalence of the two is not straightforward. For example, the
implementation of Welch in Elephant wraps a function from SciPy under the hood, but it provides users alter-
native parameter specifications. In Elephant, the frequency resolution of the PSD is defined in terms of a fre-
quency value (e.g., 2 Hz) and the degree of overlap between the multiple windows is defined as a fractional value.
The Elephant implementation then translates the function call parameters into the corresponding parameters of
the more generic SciPy Welch algorithm implementation. This includes specifying the length of the windows
used by the algorithm (in samples) and the length of their overlap (in samples) to reflect that frequency resolu-
tion and fractional overlap. The description of parameters by NEAO aims to help understand the similarities
between Analysis 1.1 and 1.3 by providing classes associated with each possible parameter. Table 7C shows the
aggregation of a query that identifies, for the function executions that computed a PSD using the Welch method,

Fig. 5  Analysis 1: Power spectral density (PSD) analysis across trials of a Reach2Grasp recording session. The
PSD was computed and plotted (0–100 Hz range) for each trial available in the i140703-001 session and saved
in a PNG file named after the trial ID number. The three versions of the analysis script (i.e., Analysis 1.1, 1.2,
and 1.3) store the results in a specific root folder, identified by different colors in the figure. The versions use
distinct methods and toolboxes to estimate the PSD: Elephant toolbox with the Welch method (blue), Elephant
toolbox with the multitaper method (green), or SciPy using the Welch method (red). Overall, all 160 files
are stored in each main output folder for this analysis (trial 142 is ignored). Plots of the same trial across the
versions (shown here: trial 35) show that the outputs from the two analyses using the Welch method are visually
indistinguishable, contrasting with the multitaper method.

https://doi.org/10.1038/s41597-025-05213-3

1 5Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

all the parameters used by the function and the specific class derived from AnalysisParameter. The query lists
the parameter values together with the classes, and the aggregation is performed by the output file folder. The
query shows that all results from both Analysis 1.1 and 1.3 used a parameter to define the window function
(string “hann”, which is how a Hanning window is selected in either Elephant or SciPy implementations of
Welch). However, each of the two analyses used other distinct parameters when computing the PSD. Analysis
1.1 defined a frequency resolution of 2.0 Hz and an overlap factor of 0.5. Analysis 1.3 defined the input time
series sampling frequency as the unit-less number 500.0, the window length as 250 samples, and the length of
overlap as 125 samples. With this information, it is possible to conclude that the two scripts performed equiva-
lent PSD estimations, as the overlap factor can be computed from the window and overlap length in samples
(= .0 5125

250
) and the frequency resolution in Hz can be computed from the window length and sampling fre-

quency (= 2 Hz500 Hz
250

).
The overview query presented in Table 5B showed that all three variants of Analysis 1 used a Butterworth

filtering step. However, we can also use NEAO to create queries that directly ask for details of the filtering used
when generating the results of Analysis 1.

Were the PSD results derived from filtered data? For the files that stored the results of a PSD analysis,
it is possible to query if any function execution before the computation of the PSD was from the NEAO class
DigitalFiltering (which groups all filtering methods in the taxonomy). Table 8A shows the query result aggre-
gated by the output folder. This shows that all files from each Analysis 1 implementation computed the PSD
using data derived from a filtered time series.

What type of filter was used? We can extend the previous query to identify the subclass of DigitalFiltering,
which will identify the NEAO class that represents the specific type of filter used. Table 8B presents the query
result aggregated by the output folder, which shows that all files from each variant of Analysis 1 used the
Butterworth type of filter.

A

Root file path

NEAO PSD computation class

neao_steps:Compute
PowerSpectralDensityMultitaper

neao_steps:Compute
PowerSpectralDensityWelch

…/psd_by_trial 0 160

…/psd_by_trial_2 160 0

…/psd_by_trial_3 0 160

B

Package Version

File count per root file path

…/psd_by_trial …/psd_by_trial_2 …/psd_by_trial_3

Elephant 0.14.0 160 160 0

SciPy 1.11.4 0 0 160

C

NEAO class Value

File count per root file path

…/psd_by_trial …/psd_by_trial_3

neao_params:WindowFunction hann 160 160

neao_params:FrequencyResolution 2.0 Hz 160 0

neao_params:WindowOverlapFactor 0.5 160 0

neao_params:SamplingFrequency 500.0 0 160

neao_params:WindowLengthSamples 250 0 160

neao_params:WindowOverlapSamples 125 0 160

Table 7.  NEAO provides specific details for the results of the three PSD analyses. Different SPARQL queries
were executed in the knowledge graph to interrogate specific information from the provenance of the files that
stored PSD estimates. Aggregations of the query results are presented according to the root in the file path.
The main reach2grasp folder in the root file path was removed for clarity, and only the names of the subfolders
specific to the analysis variants are shown. (A) SPARQL query identifying the function used to compute the
PSD. It is possible to correctly identify which result file sets contain plots of PSDs computed using the Welch
method (all files in the psd_by_trial and psd_by_trial_3 subfolders) or the multitaper method (all files in the
psd_by_trial_2 subfolder). (B) SPARQL query result identifying the software package name and version where
the function used to compute the PSD was implemented. It is possible to correctly identify which result files
used either Elephant (all files in the psd_by_trial and psd_by_trial_2 subfolders) or SciPy (all files in the psd_
by_trial_3 subfolder). (C) SPARQL query listing the class and value of the parameters used by executions of a
function that computed PSD using the Welch method. The parameter class is derived from AnalysisParameter.
For the two different result sets that used the Welch method (files in the psd_by_trial or psd_by_trial_3
subfolders), the distinct parameters required by either the Elephant or SciPy software implementations can be
identified and compared. In all tables, the prefixes of the full IRIs of the NEAO classes returned by the queries
were substituted by the namespaces according to Table 1.

https://doi.org/10.1038/s41597-025-05213-3

1 6Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Which parameters were used for filtering? Besides the type of filter, the choice of filtering parameters deter-
mines the final characteristics of the time series used to compute the PSD. We expand the query used to identify
any function execution that performed a filtering step (Table 8A) to list all the parameters used by the function
and the annotation with the specific class derived from AnalysisParameter. The query lists the parameter’s value
together with the class, and the aggregation is performed by the output folder. Table 8C shows the query result:
all three versions of Analysis 1 used a fourth-order filter, and the filter was used to low-pass the input time series
with a cutoff frequency of 250 Hz.

In a similar manner, one may also probe for more complex interdependencies of the analysis steps, such as
the order of performing the downsampling and filtering steps.

In-depth queries for Analysis 2.  Analysis 2 produced two subsets of results (referred to as Analysis 2.1 and
Analysis 2.2, each stored in a different subfolder inside the main reach2grasp folder: surrogate_isih_*; Table 3).
From visually inspecting these results (Fig. 6), it is apparent that the plots from Analysis 2 show ISI distributions
of surrogate spike trains derived from the data of neuronal units identified in the recording session. However,
the two results subsets differ in that only for Analysis 2.2 the ISI distribution is preserved by the surrogate pro-
cedure. However, the information in the plot does not allow for identifying the exact cause for this discrepancy.
Moreover, in the main results folder for all analyses, also other result files store plots of ISIHs (Table 6B). In the
following, we show how SPARQL queries can be built upon the generic query used to identify any result with
ISIH analyses to answer questions regarding the specific details of the analysis of the ISI of surrogate spike trains.

Were spike train surrogates used in the analysis? To isolate the specific subset of results from Analysis 2,
it is possible to query which files stored ISIHs derived from data identified with the NEAO SpikeTrainSurrogate
class. Table 9A shows the query results aggregated by the output folder. The query correctly identifies all the 6
result files produced by each implementation of Analysis 2.

Which spike train surrogate generation method was used? Several methods exist to compute sur-
rogates from experimental data that either preserve or destroy the ISI distribution of the source data59.
Inferring the surrogate computation method in Analysis 2.1 and 2.2 based on the ISIH alone is not possible.
Instead, we query the function executions that performed spike train surrogate generation using the NEAO
SpikeTrainSurrogateGeneration class, and obtain the specific method by identifying the subclass. Table 9B shows
the query results aggregated by the output folder. This shows that Analysis 2.1 used the uniform spike dithering
surrogate generation method, which is expected to distort the ISI distribution. In contrast, Analysis 2.2 used the
trial shifting method that is known to preserve the ISI distribution in the generated surrogates55.

How many spike train surrogates were used? With the previous query, it is also possible to identify the
number of outputs from the function executions annotated with the SpikeTrainSurrogateGeneration class. The
aggregation in Table 9B shows that both implementations of Analysis 2 used 30 surrogates.

What are the parameters used for generating the surrogates? Similarly to queries presented earlier, it is pos-
sible to obtain details on the parameters used to generate the surrogates by listing the parameters for the function

A

Root file path File count

…/psd_by_trial 160

…/psd_by_trial_2 160

…/psd_by_trial_3 160

B

Root file path neao_steps:ApplyButterworthFilter

…/psd_by_trial 160

…/psd_by_trial_2 160

…/psd_by_trial_3 160

C

NEAO class Value

File count per root file path

…/psd_by_trial …/psd_by_trial_2 …/psd_by_trial_3

neao_params:FilterOrder 4 160 160 160

neao_params:LowPassFrequencyCutoff 250.0 Hz 160 160 160

Table 8.  NEAO provides details for the filtering step used by the PSD analyses. Different SPARQL queries were
executed in the knowledge graph to interrogate specific information from the provenance of the files that stored
PSD estimates. Aggregations of the query results are presented according to the root in the file path. The main
reach2grasp folder in the root file path was removed for clarity, and only the names of the subfolders specific to
the analysis variants are shown. (A) SPARQL query identifying if any step that performed a filtering operation
was executed before the computation of the PSD saved in a result file. All files in each of the three different result
subfolders had filtering. (B) SPARQL query result identifying the class of the filtering step. All files in each of the
result subfolders used a Butterworth-type filter. (C) SPARQL query listing the class and value of the parameters
used by executions of a function that performed a filtering step. All files in each PSD analysis result set had low-
pass filtering with 250 Hz cutoff and used a fourth-order filter. In all tables, the prefixes of the full IRIs of the
NEAO classes returned by the queries were substituted by the namespaces according to Table 1.

https://doi.org/10.1038/s41597-025-05213-3

17Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

annotated with SpikeTrainSurrogateGeneration and the specific classes derived from AnalysisParameter.
Table 9C shows the result aggregated by the output folder. The query result shows that Analysis 2.1, which used
the uniform spike train dithering method, used a dithering time of 15 ms. In contrast, Analysis 2.2, which used
the trial shifting method, used a longer dithering time of 30 ms. Both parameters correspond to the maximum
time for which either the individual spikes (for uniform spike dithering) or all spikes in the individual spike
trains (for trial shifting) are shifted backward or forward in time.

What bin size is used for the ISIH of surrogate spike trains? It is possible to specifically query for the histo-
gram bin size parameter used to compute the ISIHs from data derived from a spike train surrogate (identified by
the NEAO SpikeTrainSurrogate class) by using the BinSize class. Table 9D shows the aggregation of the result by
the output folder revealing that all ISIHs from the surrogates were computed using 5 ms bin sizes.

Fig. 6  Analysis 2: Interspike interval histogram (ISIH) analysis of surrogate spike trains generated using spike
data from a Reach2Grasp recording session. The ISIH was computed for six neuronal units across all trials
where the monkey performed the task correctly in session i140703-001. The neuronal units were selected based
on the signal-to-noise ratio (SNR, with a value greater than or equal to 5) and mean firing rate in the trial
(greater than or equal to 15 Hz in all correct trials in the session). The ISIH obtained from the data is computed
using 5 ms bins and plotted as bars. Thirty surrogates were generated from the spike data of each trial, the ISIH
across trials was computed similarly as for the spike data, and the mean (orange line) and standard deviation
(orange areas) were plotted. Two versions of the analysis script exist (i.e., Analysis 2.1 and 2.2), each storing
PNG files with the plots (named after the neuronal unit) into a specific root folder, identified by different colors
in the figure. The different versions use distinct methods to generate the surrogates using the Elephant toolbox:
uniform spike dithering (blue folder) or trial shifting (green folder). Overall, six files are stored in each main
output folder for this analysis. Note that for the plots of the same neuronal unit across the versions (Unit 15001
is shown in the figure), the results obtained using the trial shifting method show that the ISI distribution is
preserved, contrasting to the outputs obtained using the uniform spike dithering method. Other than that, the
two result sets are visually indistinguishable.

https://doi.org/10.1038/s41597-025-05213-3

1 8Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

In-depth queries for Analysis 3.  Inspecting the results from Analysis 3 (Fig. 7), all 200 plots produced from
artificial spike trains and stored in isi_histograms are visually similar: the histograms show an exponentially
decaying ISI distribution, and the variability measure displayed in the plot’s title has values close to 1. However,
the artificial spike trains used in the plots were generated as two different stationary point processes: Poisson or
gamma. Also, several measures exist to investigate the variability of ISIs, each taking into account features of the
data such as rate fluctuations60,61. NEAO can be used to investigate specific details to understand the provenance
of the histogram plots and the computed variability measure.

Which process was used to generate the spike train for each plot? For each file that saved an ISIH
that was computed from data output by a function execution that generates artificial data (identified by the
ArtificialDataGeneration NEAO class), it is possible to query the subclass from AnalysisStep used to annotate
the function execution. This query will identify one of several steps from the primary NEAO taxonomy that
performs data generation. Table 10A shows the aggregation of the query results according to the range of the
numbers used in the name of the files stored in the subfolder isi_histograms (i.e., 1–100 will correspond to the
files generated by the stationary Poisson process, and 101–200 to the files generated by the stationary gamma
process; cf., Fig. 7). The query correctly shows that the first 100 files were generated by a stationary Poisson pro-
cess and the last 100 files by a stationary gamma process.

Which parameters were used to generate the spike train used for each plot? At this point, it is clear that
the two groups of plots are different with respect to the process used for data generation, yet they appear similar.
Depending on the choice of parameters, it is possible for a gamma process to have statistical properties that
are identical to a Poisson process. NEAO allows the identification of the parameters by expanding the previ-
ous query to list all the parameters used by the artificial data generation function and the class derived from
AnalysisParameter. Table 10B shows the result of this query aggregated by the range of the file names. The
query result shows that both processes aimed to generate spike trains with a target firing rate of 10 Hz. However,

A

Root file path File count

…/surrogate_isih_1 6

…/surrogate_isih_2 6

B

Root file path
Number of
surrogates

NEAO spike train surrogate generation class

neao_steps:GenerateTrialShifting
Surrogate

neao_steps:Generate
UniformSpikeDitheringSurrogate

…/surrogate_isih_1 30 0 6

…/surrogate_isih_2 30 6 0

C

NEAO class Value

File count per root file path

…/surrogate_isih_1 …/surrogate_isih_2

neao_params:DitheringTime 25.0 ms 6 0

neao_params:DitheringTime 30.0 ms 0 6

D

Root file path Bin size File count

…/surrogate_isih_1 5.0 ms 6

…/surrogate_isih_2 5.0 ms 6

Table 9.  NEAO provides specific details for the results of the two analyses that computed ISIHs from
surrogate spike trains. Different SPARQL queries were executed in the knowledge graph to interrogate specific
information from the provenance of the files that stored ISI histograms computed from spike train surrogates.
Aggregations of the query results are presented according to the root in the file path. The main reach2grasp
folder in the root file path was removed for clarity, and only the names of the subfolders specific to the two
analysis variants are shown. (A) SPARQL query identifying files where the ISIH was computed from
data originating from a spike train surrogate. Only files in the surrogate_isih_* folders are identified, as these
are the files with ISIH plots from surrogate spike trains. (B) SPARQL query identifying the class and number of
outputs of a function executed to generate spike train surrogates, which were used to compute the ISIH saved in
the file. The query correctly identifies the use of the uniform spike dithering method in the result files stored in
the surrogate_isih_1 subfolder and trial shifting in the result files stored in the surrogate_isih_2 subfolder. Both
analyses generated 30 surrogates. (C) SPARQL query identifying the class and value of the parameters used by
executions of a function that generated spike train surrogates. The ISIHs in the files stored in surrogate_isih_1
(that used the uniform spike dithering surrogate generation method) used a dither time of 25 ms. The ISIHs
in the files stored in surrogate_isih_2 (that used the trial shifting method) used a dither time of 30 ms. (D)
SPARQL query asking specifically for the bin size parameter during the computation of a ISIH from spike
train surrogates. All files in each of the two different result subfolders contain histograms with 5 ms bin size.
In all tables, the prefixes of the full IRIs of the NEAO classes returned by the queries were substituted by the
namespaces according to Table 1.

https://doi.org/10.1038/s41597-025-05213-3

1 9Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

the gamma process generation function (for files 101–200) used the additional parameter shape factor with a
value of 1. With this parameter choice, the gamma process employed is mathematically equivalent to a Poisson
process62, and the ISI distribution will have the exponentially decaying shape expected for spike trains generated
by stationary Poisson processes.

What bin size is used for the ISIH of artificially generated spike trains? It is possible to use the BinSize
NEAO class to specifically query for the bin size parameter used by the function that computed ISIHs using data
derived from the output of a step that generated artificial data. Table 10C shows the aggregation of the result by
the range in the file names. This shows that all ISIHs from artificial data in isi_histograms were computed using
10 ms bin sizes.

Which interval variability measure was used? To identify the exact ISI variability measure that is presented
in the title of the histograms, it is possible to execute a query to check which files stored data identified with the
NEAO InterspikeIntervalVariabilityMeasure class, which is the output from the execution of a function anno-
tated with the InterspikeIntervalVariabilityAnalysis class. Table 10D shows the aggregation of the query results
considering the range in the file names. The query shows that all plots in isi_histograms used the same measure
CV2, which is a modification of the original method of computing the standard coefficient of variation of ISIs to
avoid biased estimations when the firing rate is slowly modulated61. However, the interpretation is similar, and
spike trains generated by a Poisson process are expected to have values around 1.

Discussion
We introduced the Neuroelectrophysiology Analysis Ontology (NEAO), a novel domain ontology aimed at
describing the analysis of data produced by experiments that used electrophysiology to investigate the function
of the nervous system, and comparable data resulting from brain simulations. We implemented a model that
describes the analysis as a sequence of atomic steps. The analysis steps are associated with specific data inputs
and outputs, parameters that control the behavior of the analysis method executed in each step, and the details
of its software implementation. The steps are semantically grouped according to the purpose of the analysis and

Fig. 7  Analysis 3: Interspike interval histogram (ISIH) analysis of artificially generated spike trains. Two
hundred spike trains were generated using either a stationary Poisson or a stationary gamma process using the
Elephant package. The ISIH using a 10 ms bin size and the CV2 variability measure were computed for each
spike train. The ISIH was plotted with the CV2 value and saved as a PNG file. All files were collected into a
single folder. The first one hundred files contain plots obtained from the spike trains generated by the stationary
Poisson process (range 1–100, identified with the blue color in the figure), while the last one hundred files
contain the plots of the spike trains generated by the stationary gamma process (range 101–200, identified by
the green color in the figure). Note that the files from both result sets are indistinguishable (plots for the spike
train number 10, generated by a Poisson process, and number 162, generated by a gamma process, are shown).
Visually, the plots of both result sets show an exponentially decaying ISI distribution, and all spike trains have
an ISI variability measure with values close to 1.

https://doi.org/10.1038/s41597-025-05213-3

20Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

algorithmic similarity. In addition, the ontology allows for bibliographic references that describe individual steps
unambiguously.

Using an ontology to represent data entities is an effective mechanism to represent and expose them accord-
ing to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles28. Firstly, ontologies provide a
standardized and formal framework for describing data entities, ensuring their clear and precise representation.
By adhering to a common vocabulary, data findability is enhanced, allowing researchers to locate and under-
stand the meaning of specific entities. As presented in the results, using NEAO classes to annotate the entities
involved in the analysis of neuroelectrophysiology data fosters findability by allowing human-understandable
queries to collections of analysis outcomes. This approach eliminates the reliance on free-text descriptions (e.g.,
a README file) and the tedious inspection of specific software codes used to generate the data. Such queries
may expose answers to questions of increased complexity, for example by requiring a specific sequence of anal-
ysis steps or by referencing grouping terms that identify sets of related analysis methodologies. Therefore, the
findability of an analysis result is facilitated.

Secondly, ontologies promote interoperability by creating a shared understanding of data semantics. This
facilitates seamlessly integrating tools and standards across diverse scientific domains, heterogeneous datasets,
and related applications. The analysis of neuroelectrophysiology data often involves complex workflows com-
posed of multiple interconnected steps carried out by distinct software tools and services. As we demonstrated,
NEAO is particularly well-suited to represent such intricate workflows and achieve descriptions with a common
level of detail. This tool-agnostic framework describes analysis results based on their conceptual content and can
be used to identify similar analysis outcomes obtained by different tools. This interoperability also contributes
to the reusability of analysis outcomes, as researchers can confidently leverage and combine information from
various sources as starting point for further analysis, fostering collaboration and accelerating scientific discov-
ery. The reuse of derived data may be considered as an increasingly important aspect of conceptualizing elec-
trophysiology analysis workflows, given that with the advent of modern recording techniques7 and simulation
technology63 the analysis of data is prone to require significant amounts of compute resources. In this way, the
use of NEAO as an ontology to model analysis outcomes of electrophysiology data aligns with the FAIR princi-
ples, offering a robust foundation for enhancing the overall utility of the data.

A

File
name
range

NEAO spike train generation class

neao_steps:Generate
StationaryGammaProcess

neao_steps:Generate
StationaryPoissonProcess

1–100 0 100

101–200 100 0

B

NEAO class Value

File name range

1–100
101–
200

neao_params:FiringRate 10.0 Hz 100 100

neao_params:ShapeFactor 1 0 100

C

File name range Bin size File count

1–100 10.0 ms 100

101–200 10.0 ms 100

D

File name range neao_steps:ComputeCV2

1–100 100

101–200 100

Table 10.  NEAO provides specific details for the results of the ISIH analysis of artificially generated spike trains.
Different SPARQL queries were executed in the knowledge graph to interrogate specific information from the
provenance of all the files that stored ISI histograms computed from artificially generated data. Aggregations
of the query results are presented according to the range of the numbers in the file names (i.e., 1–100 refers to
all consecutive files with the name between “1.png” and “100.png”). (A) SPARQL query to identify the step
class used to generate the artificial data for which the ISIHs were computed. The first 100 files used spike trains
generated by a stationary Poisson process, while the last 100 files used spike trains generated by a gamma
process. (B) SPARQL query identifying the class and value of the parameters used by executions of a function
that generated artificial data. All 200 files used a target firing rate of 10 Hz, but the generation of the spike
trains of the last 100 files (by a gamma process) used a shape factor of 1 (equivalent to a Poisson process). (C)
SPARQL query asking for the bin size parameter during the computation of an ISIH from artificially generated
data. All 200 files contain histograms with a 10 ms bin size. (D) SPARQL query identifying the class of the step
that performed the spike interval variability analysis. All 200 result files used the CV2 statistic. In all tables,
the prefixes of the full IRIs of the NEAO classes returned by the queries were substituted by the namespaces
according to Table 1.

https://doi.org/10.1038/s41597-025-05213-3

2 1Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

By addressing the competency questions in Table 2, NEAO facilitates obtaining insights on the analysis
results. We implemented example scenarios that address several challenges in identifying information when
querying a set of analysis results: heterogeneous data sources (i.e., experimental and artificially generated data);
conceptually similar methods leading to different outcomes (i.e., the different approaches for calculating PSDs
in Analysis 1, spike train surrogate generation methods in Analysis 2, and spike train generation in Analysis 3);
distinct analyses producing conceptually similar results (i.e., the ISIH computation in Analyses 2 and 3); analy-
ses using different software implementations and parameterizations (the PSD computation by the Welch method
in Analysis 1); analyses sharing common steps (i.e., common filtering steps in Analysis 1); and analyses using
different parameters (i.e., the different bin sizes for the ISIH computations in Analyses 2 and 3 or the different
dither times when generating the surrogates in Analysis 2). The use of the common semantic layer provided by
NEAO assists in formulating the corresponding queries without the need for knowledge of the analysis code.
For example, in a search for results from Analysis 1, the identification of all 3 result sets is possible with a query
not containing the Elephant and SciPy function calls “welch_psd,” “multitaper_psd,” and “welch” as values for
the function name. Moreover, only NEAO clearly identifies the similarity of Analyses 1.1 and 1.3 with respect
to using the Welch method, which is less apparent from the function names (here, “welch_psd” vs. “welch”).
Therefore, using NEAO classes to annotate the steps, data, and parameters involved in the analysis reduces ambi-
guity and promotes clarity, accessibility, and coherence, especially when considering many complex analyses.

The examples presented highlight the effectiveness and benefits of using NEAO to describe the processes
involved in analyzing a neuroelectrophysiology dataset. The approach can unify and semantically enrich the
description of distinct analysis workflows. The selected queries demonstrate how the underlying implemen-
tation details are abstracted, allowing the researcher to ask questions using human-readable semantics based
on the methodological concepts that produced the result. Using machine-readable descriptions that integrate
well with the ontology definition in OWL enables users to perform precise queries to gain insights across het-
erogeneous analyses. The example scenarios illustrated how NEAO effectively bridged gaps caused by differing
terminology, parameter choices, and software implementations.

The types of ambiguities we highlighted are frequently found, and we suggest NEAO can help research-
ers gain a more structured view of available analysis approaches. As an example of a specific method that has
considerably evolved in terms of algorithms, assumptions and outcomes is the Spike Pattern Detection and
Evaluation (SPADE) method for detecting neuronal activity patterns. The method evolved from identifying
patterns of synchronous neuronal spikes64, to incorporating spatio-temporal (non-synchronous) recurring pat-
terns65, and finally to refined statistical testing based on the temporal lags (3d-SPADE)66. While the conceptual
approach to assessing neuronal activity patterns is shared between the three variants, the method’s capabilities
may differ. Therefore, identifying the precise implementation is crucial for reproducibility. Other conceptually
different methods have been published to detect spatio-temporal patterns in spike data (e.g., CAD67, ASSET54;
see ref. 9 and ref. 15 for reviews). Despite differences in the algorithmic approach, underlying assumptions and
interpretation, such methods share a common semantic quality and data type of their outputs (namely, the
identified spike patterns). Using NEAO’s cross-cutting groupings, it becomes possible to provide fitting semantic
groupings to expose these similarities, while retaining a clear disambiguation between the involved methods and
their variants.

To take advantage of NEAO, it must be associated with the data analysis processes. To this end, multiple
scenarios can be identified. In this publication, we demonstrated how NEAO can annotate provenance tracks
produced while generating a specific data artefact, which were structured using RDF. Here, objects of the
AnalysisStep class of NEAO are manually associated with individual scripts or functions used to generate the
provenance information. This association must also be understood by the tool collecting the provenance infor-
mation. This lack of automation in our examples is a limitation for using NEAO for the analysis description, as
this can be error prone, especially in large-scale or more complex analysis pipelines. Ideally, software tools used
in the analysis process would identify their functionality using concepts defined by NEAO and provide semantic
annotations without further intervention by the scientist (e.g., the toolbox developers use NEAO to provide RDF
descriptions of the functions available in a toolbox). In an alternate second scenario, NEAO could be used to
promote a manual classification of analysis results by the scientist, e.g., in a webform filled by the scientist with
the matching analysis step(s) upon uploading an analysis result. This scenario is analogous to currently used
mechanisms to share primary experimental data, where typically metadata cannot be captured in a fully automa-
tized fashion. A third scenario can be considered, where NEAO is used not to describe a concrete analysis output
but to semantically enrich a description of the process implemented in a particular analysis pipeline. In this
way, NEAO supports the domain-agnostic characterization, findability, and comparison of process descriptions,
which may form the basis for concrete implementations based on a suitable software stack.

Once NEAO enriches the provenance of a data set or a process description in the manner outlined above,
scientists may exploit this semantic description in several ways. In the case of provenance tracks stored as
RDF data, these could be made available through a suitable knowledge graph that organizes all analysis results
obtained by a single scientist or a defined group of people, such as a lab or members of a project. In this way,
the researcher’s effort to document results is minimized while the findability of results is maximized. This holds
particularly true for heterogeneous groups of people, where the abstracted semantics of NEAO help in building
successful search queries. Moreover, NEAO’s grouping of methodologies by analysis purpose may inspire fur-
ther investigations and reveal similarities and discrepancies in separate and alternate analysis approaches (e.g.,
by two researchers working independently on the same data). As NEAO can abstract provenance information or
process descriptions, one might also explore the possibility of integrating these semantically enriched descrip-
tions with AI methods. This could lead to the creation of novel descriptions for the analysis (e.g., by automat-
ically generating a textual description of the analysis or by suggesting equivalent code to perform the analysis
using a different programming language).

https://doi.org/10.1038/s41597-025-05213-3

22Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Without annotating provenance or process descriptions using NEAO, the ontology can potentially act as a
knowledge organization system through the components SoftwareImplementation, SoftwarePackage and has-
BibliographicReference. These can summarize the capabilities of various software tools available for executing
particular analysis methods, as well as relevant literature that interested scientists can refer to and learn about
these methods. With this goal in mind, we aim to continuously update and curate NEAO to provide a useful
resource for mapping implementations and descriptions of analysis methods. Such a map can help scientists to
identify suitable toolboxes for a specific analysis task, and to assist in pinpointing differences between different
software solutions and analysis methods. Moreover, for automated AI systems, the formalized representation
of such knowledge as a curated ontology may prove a decisive asset in increasing the precision at which these
systems can either disambiguate differences between methodologies or associate similar approaches.

The selected use cases demonstrate NEAO’s intended role in describing analyses and facilitating the retrieval
of relevant knowledge on the results. While these practical examples of NEAO’s application demonstrate its
ability to answer a large set of competency questions of varying complexity, importantly, they are not designed to
empirically benchmark NEAO’s ability to improve data sharing and knowledge transfer against other approaches
regarding their accuracy and reliability. Nevertheless, we suggest that NEAO might be a formal foundation for
designing studies to explore and contrast such different approaches for improving data sharing among research-
ers, and we can speculate on the added advantages. A straightforward approach is sharing the results with the
source code and written documentation (e.g., a README file). This is non-standardized and prone to ambigu-
ities, as outlined. In addition, no direct link between the processes in the pipeline inferred from the code and
the actual files is guaranteed. Combined with the unstructured information in the documentation, we hypoth-
esize that this approach will impair the findability and interoperability. As a second approach, the proposal put
forth in this study suggests the automatic capture of provenance with manual annotations of specific elements
in the pipeline with NEAO. This is expected to provide a direct improvement in findability and interoperabil-
ity, as run-time information from the analysis process57 is automatically structured and linked to outputs in a
machine-readable form without ambiguities due to NEAO annotations. Nevertheless, among automated solu-
tions to capture the analysis process, we may find that in certain scenarios it is sufficient to use solutions that
capture a more coarse-grained (lightweight) view of the analysis provenance. In contrast, a more fine-grained
description of the data manipulations may be necessary in other scenarios. A third approach for data sharing
might involve using AI tools. For example, a system based on LLMs could support searching for information on
the documentation or source code associated with the results. However, fine-tuning these AI models requires
domain-specific knowledge, and the information in NEAO could provide a valid source. Therefore, AI-based
methods would benefit from a curated ontology, as the formalized representation of neuroelectrophysiology
knowledge may increase the precision with which these systems can either disambiguate differences between
methodologies or associate similar approaches.

In this work, we also did not attempt comparisons to other ontologies. Direct comparisons to NEAO are
difficult since existing ontologies have different scopes, and do not provide elements to describe the analy-
sis of neuroelectrophysiology data in the same depth. Ontologies applicable to data analysis in general (e.g.,
EDAM, REPRODUCE-ME), workflows (e.g., P-Plan68, D-PROV69, ProvONE70, Wf4Ever71), and biomedical
sciences (e.g., OBI, OBCS) lack classes describing and organizing the specific neuroelectrophysiology methods
and data (e.g., as depicted in Fig. 3). Ontologies for describing software (e.g., SWO72, Function Ontology73) are
not focused on the relationship between the specific analysis methods and their implementation by specialized
toolboxes in the field, as we introduced in our model (Fig. 2). The ontologies for neuroscience (e.g., NIFTSD,
CNO) offer descriptions of broad neuroscience terms. They focus primarily on describing data and its collection,
and not specific elements in the analysis of electrophysiology experiments. Finally, the few ontologies imple-
mented for electrophysiology within neuroscience are limited. Some focus on narrow domains, including ion
channels (ICEPO) and inner ear (OBI_IEE) electrophysiology. Others provide some methods for the analysis of
EEG-related data (NEMO and ref. 39) or a few typical methods for data analysis (OEN). These ontologies do not
cover the many methods for extracellular electrophysiology available in this initial implementation of NEAO.
Therefore, it would be difficult to achieve a description of our use cases in the same depth as presented. To facil-
itate assessing the similarities and differences between NEAO and other ontologies, we provide a comparison
in the online documentation (accessible at http://purl.org/neao).

The initial implementation of the NEAO has some limitations. First, although we have defined specific classes
for the data and parameters associated with the steps in the analysis, NEAO does not use OWL to formally
define the AnalysisStep class with respect to its inputs, outputs, and parameters, which reduces the expressivity
of the ontology. However, this choice provided the flexibility needed to accommodate distinct code implementa-
tions found across various toolboxes. In MNE, for example, the class that computes a PSD allows the generation
of either an array with the PSD data (as Elephant or SciPy) or a plot of the PSD. Therefore, placing an OWL
restriction on the output of PowerSpectralDensityAnalysis to describe it as the PowerSpectralDensity class would
generate a wrong inference in the latter case.

Second, we captured the concepts describing functionality implemented in common toolboxes that are
focused specifically on the analysis of extracellular data. Currently, only 211 classes for specific methods are
implemented, to analyze mostly spike activity and LFP data. As demonstrated in our examples, the initial imple-
mentation supports typical datasets and analysis methods using the main open source toolboxes in the field.
However, we acknowledge that there are still many omissions. For example, although many methods described
for LFP analysis are routinely employed with EEG/MEG data, this data type is different and the analysis may
involve additional methodologies that are still not covered. Therefore, the ontology needs to be further expanded
for the complete coverage of the field and validation with other types of data. This includes concepts more
specific to intracellular recordings (e.g., synaptic events and membrane properties), macroscale measure-
ments (e.g., event-related potentials in EEG experiments), and emerging methods specifically developed for

https://doi.org/10.1038/s41597-025-05213-3
http://purl.org/neao

23Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

high-dimensional and complex data, which are often provided as standalone toolboxes (e.g., CEBRA74). These
extensions will allow a more in-depth validation using other datasets.

Third, the curation and releases of NEAO updates need to incorporate novel methods quickly. In this initial
version, we defined a framework to incorporate contributions from the community via the code repository on
GitHub. This foundation is a starting point for the continuous curation and expansion of the ontology. However,
we acknowledge such contributions are not systematic and community engagement may be incomplete in some
areas. We consider some strategies to mitigate this limitation. First, we plan to closely collaborate with tool
developers and invite them to suggest and enter new methods as functionality changes or new analysis methods
are incorporated. Second, for a closer collaboration with the research community, we envision releasing an
online directory to collect a library of methods for use by the community. This is intended to foster engagement
and accelerate the integration of new methods in use. Finally, we aim to investigate the use of emerging artificial
intelligence tools for literature review and synthesis, to optimize and automate the process of collecting the
domain knowledge from publications.

Finally, NEAO cannot be directly integrated into the Open Biological and Biomedical Ontologies (OBO)
Foundry. The OBO Foundry was created to support biomedical data integration through the development of
interoperable ontologies75,76, and the participating ontologies rely on a set of principles which include the align-
ment to foundational ontologies such as the Basic Foundational Ontology (BFO)77 and the Relation Ontology
(RO)78,79. These are important when aiming to reuse ontologies across different domains, a mission of the OBO.
Although it is our interest to integrate NEAO with other ontologies, especially in the scope of the OBO Foundry
project, the lack of alignment in this initial release was a design choice to be able to use NEAO quickly and
custom-fit to the domain according to the scopes we proposed. In this way, we avoid constraints introduced by
ontological commitments to other domains and concentrate on the diversity of domain-specific software that
can be used for analysis processes. Nevertheless, NEAO adheres to the OBO Foundry principles of open, acces-
sible, and version-controlled ontologies, and future work towards integration is aligning it with suitable OBO
ontologies. The first step is to identify the concepts within the upper BFO classes (i.e., continuant and occurrent)
that are most similar to AnalysisStep, Data, and AnalysisParameter NEAO classes, adjusting definitions and
axioms for the alignment. This is followed by alignment to specific OBO ontologies with overlapping concepts.
For example, the data transformation class in OBI, defined as “a planned process that produces output data from
input data” overlaps with the concept introduced by AnalysisStep in NEAO. The redundant concepts in NEAO
will be substituted, and the remaining NEAO domain-specific terms adjusted to match the imported classes
and taxonomies. As a last step, metadata and identifiers must be harmonized according to the OBO Foundry
policies, especially the number-based system for the URIs identifying the classes.

Among the future steps envisioned to expand NEAO, we intend to supply these missing alignments between
NEAO and other ontologies. This not only enhances compatibility with OBO Foundry but allows the reuse of
concepts that are already structured in well-defined ontologies. For example, the QUDT42 is a candidate for
standardizing the description of physical quantities. QUDT could be employed to specify parameter values (e.g.,
the frequency resolution in our examples) or to provide an extended description of an output (e.g., the unit of a
PSTH depending on the normalization applied). Moreover, the Software Ontology (SWO)72 provides a model
to describe software that could be used to extend the SoftwareImplementation concept, and the Ontology of
Bioscientific Data Analysis and Data Management (EDAM)32 has general concepts that could be aligned to
NEAO base classes to foster interoperability.

A second future improvement to NEAO is to expand the abstract classes ElectrophysiologySignalSource
and DataRepresentation to allow more specific queries on these semantic dimensions as proposed in Table 2.
For this purpose, novel classes need to be developed, potentially leveraging concepts and terms from other
ontologies or projects such as InterLex/NeuroLex80. For example, the QUDT ontology also describes data types.
Therefore, we plan to implement additional modules in NEAO to include more specific definitions for the usual
sources for electrophysiology signals and typical data representations.

Finally, in the future, we invite to explore the potential of integrating NEAO with existing analysis toolboxes
in an effort to provide more toolbox-centric representations of the available methods and support the automa-
tion of the analysis description. For example, an additional ontology module dedicated to the Elephant toolbox
could produce a specific subclass of ComputePowerSpectralDensityWelch, where the hasInput, hasOutput and
usesParameter properties are modeled restrictions that describe the actual functionality with respect to valid
parameters and supported input/outputs for that specific tool. Such toolbox-specific representations would inte-
grate the description with respect to versions and package information, facilitating inference on steps, data, and
parameters used. With this integration of NEAO on the level of individual data analysis tools, a toolbox could
provide its own ontological representation based on NEAO that could be readily used when describing or anno-
tating an analysis. This prevents the need for users to manually define the classes for function arguments and
returns as demonstrated in this study (cf., Fig. 8). In addition, a toolbox could automatically use NEAO classes
and properties to provide structured metadata records with the analysis outputs. With this builtin support, even
users not familiar with ontological frameworks benefit from the automated and less error-prone standardization
achieved with NEAO. We suggest that direct annotations of the Python functions as we used in our examples
could already be integrated in the code released and maintained by toolbox developers, facilitating automated
tools that aim to describe the analysis based on the code execution. Complementing that effort, toolbox develop-
ers could extend existing tools (for example, by using plugins) to use NEAO and provide automated descriptions
of computational workflows. In the end, automation is the ultimate goal, and NEAO presents itself as a bridge
to support automated systems.

In conclusion, we implemented the Neuroelectrophysiology Analysis Ontology as a new domain-specific
ontology aimed to improve the findability, interoperability, and reusability of outcomes produced by the analysis
of electrophysiology data in the scope of neuroscience. The semantic framework defined by NEAO facilitates

https://doi.org/10.1038/s41597-025-05213-3

2 4Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

the unambiguous description of the heterogeneous processes and elements involved, especially the specific data,
parameters, code implementations, and bibliographic references that are associated with the individual steps of
the analysis. In the end, this can be used to achieve a solid description of the data analysis process, which not
only facilitates querying information about the analysis but also improves its understanding for a reliable inter-
pretation of the findings.

Methods
Implementation of the Neuroelectrophysiology Analysis Ontology.  This initial version of NEAO
was implemented using the Web Ontology Language (OWL) using the Protégé81 editor (version 5.5). Classes are
named in upper camel case convention (e.g., ComputeInterspikeIntervals), and properties in lower camel case
(e.g., hasOutput). As we implemented a domain-specific ontology, in the initial version we did not align to fun-
damental ontologies such as the BFO77 or RO78. The rationale was to avoid introducing unnecessary ontological
commitments, as the basic competency questions to be addressed do not require the abstract concepts described
by these ontologies. We used standard ontologies for the general description of resources, such as Dublin Core
DCMI Metadata Terms51, SKOS43, and BiRO50.

We started by defining the schema for an abstract model representing a step in the analysis of data from
neuroelectrophysiology experiments. The model is centered on the conceptual definition of an analysis step as
a process that transforms/generates data based on specific parameters. The step definition considers that the
specific identification of one step uses some well-defined properties (i.e., a particular data input or output, a bib-
liographic reference, and code implementation). Based on the schema, we defined a set of competency questions
that should be addressed to guide the development of the ontology. This resulted in the classes and properties
used as upper level for the rest of the ontology (base module).

We then used a recent review15 that compared major open-source toolboxes for the analysis of neuro-
electrophysiology data and described common and specific functionalities regarding the analyses that can
be performed. This review covers toolboxes with active development (updates in the last five years at the
time of its publication) and with a valid link for download. The final list included BrainStorm46, Chronux47,
Elephant13, FieldTrip45, gramm82, Spyke Viewer83 and SPIKY84. We complemented the information on the

Fig. 8  Example illustrating an approach to utilize NEAO classes to annotate Python functions in a script. In
this example, a Python function to compute the PSD is defined. Although the function internally uses the Welch
method, the function name is generic and does not reflect this. The function has two arguments (in italic font)
and returns a tuple with two objects. The second object in the return tuple (with index 1) contains the computed
PSD. After the function is declared, the special dictionary __ontology__ is defined as a function attribute. The
dictionary keys (bold text) define four main annotations. The function annotation is used to specify the URI of
the NEAO class that represents the analysis step (in this example, the class for the computation of a PSD using
the Welch method). The arguments annotation defines a dictionary to associate specific NEAO URIs to each of
the function arguments (strings in italic font): signal is defined as time series data, and frequency_resolution is
defined as a parameter that controls the frequency resolution of the PSD estimates. The keys in this dictionary
match the names of the arguments in the function definition. Annotations for the individual returns can be
defined with the returns dictionary element (using integers representing the index in the return tuple). Here,
the second function return is mapped to the NEAO class representing PSD data. To use CURIEs, proper
namespaces are defined in the namespaces dictionary element. This approach to connect software functionality
to concepts defined by NEAO is interpreted by the Alpaca software to add URIs from ontologies to the RDF
triples of the captured provenance.

https://doi.org/10.1038/s41597-025-05213-3

25Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

review by manually searching the API description of the toolboxes Elephant13 (RRID:SCR_003833; https://
python-elephant.org), MNE14 (RRID:SCR_005972; https://mne.tools), and NiTime44 (RRID:SCR_002504;
https://nipy.org/nitime). Therefore, a broad selection of software used for the analysis of data from neuroelectro-
physiology experiments was used as the basis for gathering domain-specific knowledge. As a result, the concepts
that define specific steps in the analysis of neuroelectrophysiology data were identified.

We defined a controlled vocabulary and descriptions to refer to those concepts, which we termed analysis
steps as the atomic elements that compose an analysis process. They were entered as classes in the ontology
(steps module) with relevant annotations. We then identified the concepts defining the data inputs and outputs
of those steps and entered them as classes in the ontology (data module). Finally, we started defining specific
parameters that define the behavior of an analysis step (parameters module). For any class or property, we dis-
cussed labels and descriptions.

We defined relevant groupings using the Rector normalization technique53. An approach in OWL to provide
a hierarchical classification of classes is to manually assert that specific classes are subclasses of more general
ones. This may become difficult to manage and prone to errors as the ontology grows and becomes more com-
plex. In NEAO, the complexity is already present because one of the objectives is to provide groupings across
many dimensions (e.g., distinct algorithmic implementations or specific purposes in the analysis). The normal-
ization approach constructs inferred classes based on logical definitions rather than manually asserted hierar-
chies using subclass statements. With normalization, NEAO is modular and the design allows the community
to expand and incorporate new functionality easily. For example, consider that a novel method to estimate
functional connectivity was developed and a class representing it will be added to the ontology. The new class for
the method can be added as a separate branch in the main taxonomy for analysis steps. To define that the new
method is suitable to estimate functional connectivity, only an additional property restriction axiom stating that
the class has the FunctionalConnectivityPurpose as the value for property hasPurpose needs to be added. This will
allow the reasoner to automatically infer that the new method is also part of the FunctionalConnectivityAnalysis
class (that groups all methods to estimate functional connectivity). Therefore, expanding the ontology with new
methods is straightforward. In addition, consistency is improved as such logical definitions make the criteria for
class membership explicit. Finally, the existing definitions (e.g., the class FunctionalConnectivityAnalysis) can be
reused when adding new methods, making the ontology easier to maintain and avoiding to manually restructure
the grouping class hierarchies.

To add analysis methods to NEAO, contributors from the community can submit suggestions through the
GitHub repository issue tracker (accessible at http://purl.org/neao/suggestion). A template for the suggestion
is defined, asking for detailed information on the method: name, bibliographic reference, abbreviation, and a
detailed description of the method’s purpose and implementation. This structured process allows NEAO main-
tainers to review and evaluate the suggestion for inclusion, and to define the implementation of the new classes
in OWL. Finally, it is also possible to open issues to discuss misrepresentations and suggest improvements to
the existing definitions and references of NEAO classes (accessible at http://purl.org/neao/improvement). For a
full description of the contribution process, see the information on the NEAO code repository (http://purl.org/
neao/repository).

To use NEAO to describe analysis with newly developed software tools and packages, the current ontology
structure allows directly associating the new code with methods represented in NEAO. Software information is
represented in RDF as individuals defined with the SoftwareImplementation and SoftwarePackage classes and
properties. This allows structuring the main information of any software associated with an analysis step (e.g.,
similar to the example in Fig. 4).

Experimental dataset.  For the analyses that used experimental data, we used a publicly available dataset
containing massively parallel electrophysiological recordings in the motor areas of monkeys during the execution

NEAO property Similar property

hasInput prov:used

hasOutput prov:generated

usesParameter alpaca:hasParameter

isImplementedIn alpaca:usedFunction

nameInDefinition alpaca:functionName

Table 11.  Mappings of properties from NEAO to the Alpaca provenance model. The Alpaca package uses an
ontology derived from the W3C PROV-O ontology to structure the provenance information captured while
executing scripts that process data. The generic provenance relationships prov:wasGeneratedBy (or its inverse
prov:generated) and prov:used define the input and output data objects for each function execution (a type of
prov:Activity). These relationships are semantically similar to the NEAO properties hasInput and hasOutput.
The alpaca:Function class is used to describe the code of the Python function used in the function execution,
and it is semantically similar to the Function class in NEAO. Therefore, the alpaca:usedFunction property
represents a similar relationship to the isImplementedIn property from NEAO, and the alpaca:functionName
property stores the name of the function definition as expected by the nameInDefinition NEAO property. This
mapping translates the provenance information captured by systems that structure provenance with PROV-O
(such as Alpaca) into the model implemented in NEAO. In the table, the prefix prov: identifies the namespace of
the PROV-O ontology and alpaca: the namespace of the Alpaca ontology.

https://doi.org/10.1038/s41597-025-05213-3
https://python-elephant.org
https://python-elephant.org
https://mne.tools
https://nipy.org/nitime
http://purl.org/neao/suggestion
http://purl.org/neao/improvement
http://purl.org/neao/repository
http://purl.org/neao/repository

2 6Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

of an instructed delay reach-to-grasp task85. The experiment design, subject details, task protocol, data acquisi-
tion setup, and resulting datasets were previously described86. Briefly, each subject was implanted with one Utah
electrode array (4 × 4 mm, 96 active electrodes) in the primary motor/premotor cortices. During a trial of the
task, visual cues were delivered through an LED panel to instruct the monkey to grasp an object using either
a precision (PG) or a side grip (SG). After a 1000 ms delay, a new visual cue requested the monkey to pull an
object against a load that required either a high (HF) or low (LF) pulling force. Therefore, four possible trial types
were defined: SGLF, SGHF, PGLF, or PGHF. If the trial was completed successfully, the monkey received a food
reward. A recording session consisted of several repetitions of each trial type that were acquired continuously in
a single recording file. Neural activity was recorded using a Blackrock Microsystems Cerebus data acquisition
system (raw signals were bandpass-filtered between 0.3 and 7500 Hz at the headstage level and digitized at 30
KHz with 16-bit resolution). The published datasets were extensively annotated with experimental metadata as
described in the data publication86. Information from different sources (e.g., Utah array datasheets, experimenter
records, configuration files of the recording setup) was compiled into a metadata file87,88 using the odML89 for-
mat (RRID:SCR_001376; https://g-node.github.io/python-odml). The Neo90 library was used to load the datasets
using Python (RRID:SCR_000634; https://neuralensemble.org/neo). Neo introduces a standardized data model
and Python objects to handle neuroelectrophysiological data and associated metadata in a format-agnostic man-
ner. A custom Neo interface was implemented to read the raw single-session recording files and offline-sorted
spike data in the Blackrock Microsystems formats (NS2, NS5, NS6, NEV) together with the metadata of the odML
file. This interface provided Neo data objects with all the relevant metadata as annotations (see ref. 86 for details).
In the end, these objects were saved into files using the Neuroscience Information Exchange91 (NIX) format
(RRID:SCR_016196; https://nixio.readthedocs.io). For each subject, a full dataset including the raw electrode
data at 30 kHz bandwidth is provided, as well as a reduced dataset with the neural data downsampled to 1000 Hz.
In the examples in this paper, we used the reduced NIX dataset of monkey N, identified as i140703-001_no_raw.
nix, and available in the repository hosting the published dataset (see Data Availability)85.

Use case analyses.  All analyses were implemented as individual Python scripts. Analysis 1 and 2 have mul-
tiple implementations to use different methods and/or toolboxes. Unless stated otherwise, the Electrophysiology
Analysis Toolkit (Elephant; RRID:SCR_003833) version 0.14.092 was used for the analyses.

Power spectral density (Analysis 1).  The NIX dataset was loaded and cut into trials using functions provided by
Neo. Here, trials were defined as the interval between the task events TS_ON and STOP. These events mark the
start and end of a full trial (successful or not successful) in the reach-to-grasp task86. For each trial (N = 161),
the neural data time series was low-pass filtered using a Butterworth filter (fourth order, 250 Hz cutoff) followed
by downsampling to 500 Hz. The PSD was computed using one of three possible method/toolbox combinations:
Welch method in Elephant, multitaper method in Elephant, or Welch method in SciPy48 (RRID:SCR_008058).
The power estimates for each electrode were plotted between 0 and 100 Hz, and the plot was saved as a PNG file
named with the trial ID as defined in the annotations. Therefore, the script output is one PNG file for each trial.
One trial was too short to be able to compute a PSD for the requested parameters, and the final plot count for
each analysis was 160. Three scripts (Analysis 1.1, 1.2, and 1.3) were implemented with the same data loading,
data preprocessing, and plotting steps. Only the steps used to compute the PSD varied. In addition, the plot
function was adjusted for the version using SciPy (Analysis 1.3) to manually define the physical quantity of the
spectrum, as SciPy outputs NumPy arrays while Elephant outputs arrays with the physical quantities defined
(quantities Python package). Each script saved the respective output files in a separate folder.

Surrogate interspike interval histograms (Analysis 2).  The NIX dataset was loaded, and data was cut into trials
using Neo. Trials were defined similarly as described for the power spectral density analysis above, but only
correct trials were considered (N = 142). The analysis used spike trains containing the activity of a single neuron
(single-unit activity; SUA) if the signal-to-noise ratio (SNR) was equal to or greater than 5 and the neuron had a
mean firing rate equal to or greater than 15 Hz in the trial. For inclusion, the neuron must match the criteria in
all 142 trials. In the end, six units were selected for the analysis.

The ISIs for the spike train of a single trial were computed, and a histogram of the ISIs was obtained using 5
ms bins. The 142 ISIHs of the neuronal unit were merged to get the final ISIH across trials. In addition, 30 surro-
gates were generated from each spike train containing the data of a single trial. ISIHs across trials were computed
for the surrogates similarly to the experimental data. In the end, 30 surrogate ISIHs were obtained for a single
unit. These were averaged, and the standard deviation was computed. The ISIH for the neuronal unit was plotted
using bars, and the mean and SD of the 30 surrogate ISIHs were plotted as lines. The plots were saved as a PNG
file named with the unit ID in the dataset.

Two scripts were implemented with the same data loading, preprocessing, and plotting steps. Only the func-
tion used to compute the surrogates differed between scripts59. The first script used uniform spike dithering with
a dither time of 25 ms, excluding spikes dithered outside the spike train duration. The second script used trial
shifting with a dither time of 30 ms. Each script writes the respective output files in a separate folder.

ISIHs of artificial data (Analysis 3).  200 spike trains (100 s duration) were generated using either a stationary
Poisson process (N = 100) or a stationary gamma process (N = 100) to generate spike trains with a target firing
rate of 10 Hz. The gamma process used a shape factor of 1, which is equivalent to a Poisson process and produces
results with similar statistical properties. All the spike trains were merged into a single list. For each spike train
in the list, the ISIs were computed, and the CV2 measure61 was calculated to estimate the interval variability. A

https://doi.org/10.1038/s41597-025-05213-3
https://g-node.github.io/python-odml
https://neuralensemble.org/neo
https://nixio.readthedocs.io

27Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

histogram of the ISIs was computed (10 ms bin size) and plotted together with the CV2. The plot was saved as a
PNG file named with the order of the spike train in the list (range 1 to 200). All plots were saved in a single folder.

Annotation of Python functions with NEAO.  In the analysis scripts, a Python decorator was used to
embed semantic information provided by the NEAO inside the Python functions used for processing data. The
decorator inserted a dictionary as the special __ontology__ attribute of the function object. An example showing
the structure of the __ontology__ dictionary is shown in Fig. 8. This dictionary can store URIs to classes describ-
ing the function, parameters or return objects, and prefixes defining any namespaces in compact URIs (CURIEs).
A CURIE is an abbreviated form of a URI, avoiding the repetition of a prefix used repeatedly in the ontology
URIs. For instance, the string https://purl.org/neao/base# is used as the prefix of the URIs in the base module of
NEAO. Instead of using the full URI <https://purl.org/neao/base#term> for the annotation with term, one can
associate the prefix with the string neao_base and write the annotation as neao_base:term. Using this simplified
notation, functions in each use case analysis script were annotated with terms defined by NEAO.

The specific annotations used in each script variant from Analyses 1–3 are summarized in the Supplementary
Text. The examples in these use cases relied on the Automated Lightweight Provenance Capture (Alpaca;
RRID:SCR_023739) Python toolbox57 to capture provenance enriched with the semantic information defined
by those annotations. This approach automatically provides a detailed description of the analysis as an RDF
graph consisting of the data flow and the sequence of functions executed throughout the script. However, NEAO
is not dependent on Alpaca and can be used to describe an analysis using different approaches. For example, the
analysis scripts might have been implemented to manually insert text metadata in the result PNG plots, where
terms of NEAO act as keyword identifiers. This metadata could comprise a structured record describing inputs,
steps, and outputs using the URIs defined in NEAO. Alternatively, the script could have used NEAO to manually
represent the analysis as an RDF graph to be added as metadata to the results (e.g., similar to Fig. 4). Another use
case scenarios may involve the use of NEAO to create a machine-readable and software-independent process
description of a proposed analysis plan.

Provenance capture.  We used Alpaca version 0.2.093 to instrument each script used for a particular use case
analysis to capture provenance information57. Alpaca uses a function decorator to identify inputs, outputs, and
parameters of the functions executed inside a script that processes data. Additional details on the data objects are
also captured (e.g., object attributes such as array shapes or annotations in Neo objects). At the end of the script
execution, Alpaca saves provenance data as RDF in a sidecar file to the results, using an ontology derived from
PROV-O57. This work used the Turtle serialization format to store the captured provenance information. Thus,
each analysis script saves a file with TTL extension and PNG files in the folder storing the outputs. Alpaca can
read semantic information embedded into function and data objects as a dictionary defined in the __ontology__
attribute and add this information to the RDF output. In the end, Alpaca annotated the provenance information
of the use case analyses with the classes defined by NEAO.

Knowledge graph and SPARQL queries.  To demonstrate how NEAO is used to query information
regarding the performed analyses, we used the Ontotext GraphDB Free database (Desktop installation) running
as a local RDF triple store. The GraphDB Free RDF triple store database was obtained from the Ontotext website
accessible at https://www.ontotext.com/products/graphdb. After running the scripts of the use case analyses, RDF
data in the TTL files with provenance information and the OWL files defining NEAO, PROV-O, and the Alpaca
ontologies were inserted into an empty repository using the importrdf utility tool (the OWL2-RL rule set was
used). The GraphDB Desktop application was started, and a local SPARQL endpoint was accessible.

Several SPARQL update queries added additional triples to the graph. These triples map the model utilized
by Alpaca for describing function execution provenance in RDF to the model defined by NEAO to describe the
analysis steps. Table 11 shows the similar properties.

First, for the analysis steps, if a function execution captured by Alpaca was annotated with a class defined by
NEAO (i.e., AnalysisStep), and one of the properties defined in the Alpaca/PROV-O ontologies pointed to an
individual of a class also defined by NEAO (i.e., Data or AnalysisParameter), the triple using the appropriate
NEAO property was added. For parameters annotated with AnalysisParameter classes, the actual value used
in the function execution can be retrieved by the alpaca:pairValue property, which Alpaca uses to structure the
name and values of Python function execution parameters when serializing the provenance to RDF.

Second, to use NEAO to describe the software implementation of the step, information about the func-
tion code captured by Alpaca (e.g., version, name, and source module) was transformed into individuals of the
Function and SoftwarePackage NEAO classes and their appropriate relationships.

Finally, some functions used in the analyses might produce outputs that were grouped into containers (e.g.,
Python lists). This is the case, for instance, of the generation of surrogates by the trial shifting method. As the
input to the method is a collection of spike trains (the multiple trials), the actual output of the surrogate gener-
ation analysis step is the collection with all the trial spike trains dithered. In this case, Alpaca uses the PROV-O
prov:hadMember property to describe the container membership of the data objects returned by the function.
As the elements of these containers were annotated with Data classes defined by NEAO to attach the proper
semantic meaning, an additional query was executed to properly map these special container outputs to the
analysis step using the hasOutput property.

The SPARQL update queries to insert all these complementary triples are available in Fig. S1–S3 and the code
repository accompanying this paper (see Code availability below). In the end, when the provenance information
had semantic annotations using NEAO classes, a mapping of the PROV-O and Alpaca ontology relationships to
the ones defined by NEAO was created. This produced a knowledge graph with all the provenance of the analysis
output files linked to NEAO definitions.

https://doi.org/10.1038/s41597-025-05213-3
https://www.ontotext.com/products/graphdb

2 8Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

We used the Python gastrodon library to execute multiple SPARQL queries in the knowledge graph to answer
specific questions regarding the analyses. gastrodon can connect to the GraphDB SPARQL endpoint, execute
a SPARQL query, and format the query results as Pandas DataFrames, allowing easy formatting and output
aggregations (e.g., pivot tables). Each query was run using a Python script that saved a raw result table as a CSV
file. These CSV files were loaded into Pandas DataFrames and transformed into descriptive LaTeX tables for
reporting.

Data availability
The GitHub repository containing the NEAO OWL sources is freely accessible at https://purl.org/neao/repository
that points to https://github.com/INM-6/neuroephys_analysis_ontology at the time of publication. The ontology
documentation can be accessed at http://purl.org/neao. The dataset used in the use-case analyses is publicly
available in a repository85 hosted on the GIN service. Instructions for downloading the dataset are provided at
the repository, and it can also be directly downloaded at the permanent link address https://gin.g-node.org/INT/
multielectrode_grasp/src/a6d508be099c41b4047778bc2de55ac216f4e673/datasets_nix/i140703-001_no_raw.
nix. The output files produced by the three analyses, the raw results of the SPARQL queries as CSV files, and the
presented result tables are available in a freely accessible Zenodo repository56.

Code availability
The Zenodo repository with the code implementing the use case analyses, the interface to the local knowledge
graph, the SPARQL queries, and scripts to generate the presented result tables are freely accessible56. The open-
source toolbox Alpaca that was used to capture the provenance information annotated with NEAO is accessible
at https://alpaca-prov.readthedocs.io and can be installed from PyPI (https://pypi.org/project/alpaca-prov) or
the code repository (https://github.com/INM-6/alpaca). All software and codes were run using Ubuntu 18.04.6
LTS 64-bit and Python 3.9. Specific details of the execution environment are described in the code repository of
the use cases.

Received: 15 January 2025; Accepted: 15 May 2025;
Published: xx xx xxxx

References
	 1.	 Huang, Z. Brief History and Development of Electrophysiological Recording Techniques in Neuroscience. In Li, X. (ed.) Signal

Processing in Neuroscience, 1–10, https://doi.org/10.1007/978-981-10-1822-0_1 (Springer, Singapore, 2016).
	 2.	 Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev

Neurosci 13, 407–420, https://doi.org/10.1038/nrn3241 (2012).
	 3.	 Lalley, P. M. Intracellular recording. In Binder, M. D., Hirokawa, N. & Windhorst, U. (eds.) Encyclopedia of Neuroscience, 2019–2026,

https://doi.org/10.1007/978-3-540-29678-2_2554 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009).
	 4.	 Subash, P. et al. A comparison of neuroelectrophysiology databases. Scientific Data 10, 719, https://doi.org/10.1038/s41597-023-

02614-0 (2023).
	 5.	 Hodgkin, A. L. & Huxley, A. F. Action Potentials Recorded from Inside a Nerve Fibre. Nature 144, 710–711, https://doi.

org/10.1038/144710a0 (1939).
	 6.	 Buzsáki, G. Large-scale recording of neuronal ensembles. Nat Neurosci 7, 446–451, https://doi.org/10.1038/nn1233 (2004).
	 7.	 Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92, https://doi.

org/10.1038/s41586-020-03171-x (2021).
	 8.	 Bastos, A. M. & Schoffelen, J.-M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls.

Frontiers in Systems Neuroscience 9, 175, https://doi.org/10.3389/fnsys.2015.00175 (2016).
	 9.	 Grün, S., Quaglio, P., Stella, A. & Torre, E. Statistical evaluation of spatio-temporal spike patterns. In Jaeger, D. & Jung, R. (eds.)

Encyclopedia of Computational Neuroscience, 1–4, https://doi.org/10.1007/978-1-4614-7320-6_100702-1 (Springer New York, New
York, NY, 2020).

	10.	 Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short,
modified periodograms. IEEE Transactions on Audio and Electroacoustics 15, 70–73, https://doi.org/10.1109/TAU.1967.1161901
(1967).

	11.	 Thomson, D. Spectrum estimation and harmonic analysis. Proceedings of the IEEE 70, 1055–1096, https://doi.org/10.1109/
PROC.1982.12433 (1982).

	12.	 Percival, D. B. & Walden, A. T. Spectral Analysis for Physical Applications (Cambridge University Press, Cambridge, 1993).
	13.	 Denker, M., Yegenoglu, A. & Grün, S. Collaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant

framework. In Neuroinformatics 2018, P19, https://doi.org/10.12751/incf.ni2018.0019 (2018).
	14.	 Gramfort, A. et al. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience 7, 267, https://doi.org/10.3389/

fnins.2013.00267 (2013).
	15.	 Unakafova, V. A. & Gail, A. Comparing open-source toolboxes for processing and analysis of spike and local field potentials data.

Frontiers in Neuroinformatics 13, 57, https://doi.org/10.3389/fninf.2019.00057 (2019).
	16.	 Grün, S. & Rotter, S. (eds.) Analysis of Parallel Spike Trains (Springer, 2010).
	17.	 Muller, L., Chavane, F., Reynolds, J. & Sejnowski, T. J. Cortical travelling waves: Mechanisms and computational principles. Nature

Reviews Neuroscience 19, 255–268, https://doi.org/10.1038/nrn.2018.20 (2018).
	18.	 Dann, B., Michaels, J. A., Schaffelhofer, S. & Scherberger, H. Uniting functional network topology and oscillations in the fronto-

parietal single unit network of behaving primates. eLife 5, e15719, https://doi.org/10.7554/eLife.15719 (2016).
	19.	 Brown, E. N., Kaas, R. E. & Mitra, P. P. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature

Neuroscience 7, 456–461, https://doi.org/10.1038/nn1228 (2004).
	20.	 Semedo, J. D., Gokcen, E., Machens, C. K., Kohn, A. & Yu, B. M. Statistical methods for dissecting interactions between brain areas.

Current Opinion in Neurobiology 65, 59–69, https://doi.org/10.1016/j.conb.2020.09.009 (2020).
	21.	 Stringer, C. & Pachitariu, M. Analysis methods for large-scale neuronal recordings. Science 386, eadp7429, https://doi.org/10.1126/

science.adp7429 (2024).
	22.	 Gutzen, R. et al. A modular and adaptable analysis pipeline to compare slow cerebral rhythms across heterogeneous datasets. Cell

Reports Methods 4, 100681, https://doi.org/10.1016/j.crmeth.2023.100681 (2024).
	23.	 Bernabé, C. H. et al. The use of foundational ontologies in biomedical research. Journal of Biomedical Semantics 14, 21, https://doi.

org/10.1186/s13326-023-00300-z (2023).

https://doi.org/10.1038/s41597-025-05213-3
https://purl.org/neao/repository
https://github.com/INM-6/neuroephys_analysis_ontology
http://purl.org/neao
https://gin.g-node.org/INT/multielectrode_grasp/src/a6d508be099c41b4047778bc2de55ac216f4e673/datasets_nix/i140703-001_no_raw.nix
https://gin.g-node.org/INT/multielectrode_grasp/src/a6d508be099c41b4047778bc2de55ac216f4e673/datasets_nix/i140703-001_no_raw.nix
https://gin.g-node.org/INT/multielectrode_grasp/src/a6d508be099c41b4047778bc2de55ac216f4e673/datasets_nix/i140703-001_no_raw.nix
https://alpaca-prov.readthedocs.io
https://pypi.org/project/alpaca-prov
https://github.com/INM-6/alpaca
https://doi.org/10.1007/978-981-10-1822-0_1
https://doi.org/10.1038/nrn3241
https://doi.org/10.1007/978-3-540-29678-2_2554
https://doi.org/10.1038/s41597-023-02614-0
https://doi.org/10.1038/s41597-023-02614-0
https://doi.org/10.1038/144710a0
https://doi.org/10.1038/144710a0
https://doi.org/10.1038/nn1233
https://doi.org/10.1038/s41586-020-03171-x
https://doi.org/10.1038/s41586-020-03171-x
https://doi.org/10.3389/fnsys.2015.00175
https://doi.org/10.1007/978-1-4614-7320-6_100702-1
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1109/PROC.1982.12433
https://doi.org/10.1109/PROC.1982.12433
https://doi.org/10.12751/incf.ni2018.0019
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fninf.2019.00057
https://doi.org/10.1038/nrn.2018.20
https://doi.org/10.7554/eLife.15719
https://doi.org/10.1038/nn1228
https://doi.org/10.1016/j.conb.2020.09.009
https://doi.org/10.1126/science.adp7429
https://doi.org/10.1126/science.adp7429
https://doi.org/10.1016/j.crmeth.2023.100681
https://doi.org/10.1186/s13326-023-00300-z
https://doi.org/10.1186/s13326-023-00300-z

2 9Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

	24.	 Kaplan, R. M. & Beatty, A. S. (eds.) Ontologies in the Behavioral Sciences: Accelerating Research and the Spread of Knowledge (National
Academies Press, Washington, D.C., 2022).

	25.	 Hoehndorf, R., Schofield, P. N. & Gkoutos, G. V. The role of ontologies in biological and biomedical research: a functional
perspective. Briefings in Bioinformatics 16, 1069–1080, https://doi.org/10.1093/bib/bbv011 (2015).

	26.	 Larson, S. & Martone, M. Ontologies for neuroscience: What are they and what are they good for? Frontiers in Neuroscience 3, 60–67,
https://doi.org/10.3389/neuro.01.007.2009 (2009).

	27.	 Studer, R., Benjamins, V. R. & Fensel, D. Knowledge engineering: Principles and methods. Data & Knowledge Engineering 25,
161–197, https://doi.org/10.1016/S0169-023X(97)00056-6 (1998).

	28.	 Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018,
https://doi.org/10.1038/sdata.2016.18 (2016).

	29.	 Bandrowski, A. et al. The Ontology for Biomedical Investigations. PLOS ONE 11, e0154556, https://doi.org/10.1371/journal.
pone.0154556 (2016).

	30.	 Zheng, J. et al. The Ontology of Biological and Clinical Statistics (OBCS) for standardized and reproducible statistical analysis.
Journal of Biomedical Semantics 7, 53, https://doi.org/10.1186/s13326-016-0100-2 (2016).

	31.	 Tenenbaum, J. D. et al. The Biomedical Resource Ontology (BRO) to Enable Resource Discovery in Clinical and Translational
Research. Journal of biomedical informatics 44, 137–145, https://doi.org/10.1016/j.jbi.2010.10.003 (2011).

	32.	 Ison, J. et al. EDAM: An ontology of bioinformatics operations, types of data and identifiers, topics and formats. Bioinformatics 29,
1325–1332, https://doi.org/10.1093/bioinformatics/btt113 (2013).

	33.	 Bug, W. J. et al. The NIFSTD and BIRNLex Vocabularies: Building Comprehensive Ontologies for Neuroscience. Neuroinformatics
6, 175–194, https://doi.org/10.1007/s12021-008-9032-z (2008).

	34.	 Le Franc, Y. et al. Computational Neuroscience Ontology: A new tool to provide semantic meaning to your models. BMC
Neuroscience 13, P149, https://doi.org/10.1186/1471-2202-13-S1-P149 (2012).

	35.	 Frishkoff, G., LePendu, P., Frank, R., Liu, H. & Dou, D. Development of Neural Electromagnetic Ontologies (NEMO): Ontology-
based Tools for Representation and Integration of Event-related Brain Potentials. Nature Precedings 1–1, https://doi.org/10.1038/
npre.2009.3458.1 (2009).

	36.	 Le Franc, Y. et al. Describing Neurophysiology Data and Metadata with OEN, the Ontology for Experimental Neurophysiology. In
Front. Neuroinform. Conference Abstract: Neuroinformatics 2014, https://doi.org/10.3389/conf.fninf.2014.18.00044 (Frontiers, 2014).

	37.	 Hinard, V. et al. ICEPO: The ion channel electrophysiology ontology. Database 2016, baw017, https://doi.org/10.1093/database/
baw017 (2016).

	38.	 Farrell, B. & Bengtson, J. Scientist and data architect collaborate to curate and archive an inner ear electrophysiology data collection.
PLOS ONE 14, e0223984, https://doi.org/10.1371/journal.pone.0223984 (2019).

	39.	 Štebeták., J. & Moucek., R. Ontology based Description of Analytic Methods for Electrophysiology. In Proceedings of the 9th
International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016) - HEALTHINF, 420–425,
https://doi.org/10.5220/0005814004200425. INSTICC (SciTePress, 2016).

	40.	 Arndt, S. et al. Metadata4Ing: An ontology for describing the generation of research data within a scientific activity. Zenodo https://
doi.org/10.5281/zenodo.5957103 (2024).

	41.	 Samuel, S. & König-Ries, B. End-to-End provenance representation for the understandability and reproducibility of scientific
experiments using a semantic approach. Journal of Biomedical Semantics 13, 1, https://doi.org/10.1186/s13326-021-00253-1 (2022).

	42.	 FAIRsharing Team. FAIRsharing record for: QUDT; Quantities, Units, Dimensions and Types, https://doi.org/10.25504/
FAIRsharing.d3pqw7.

	43.	 Miles, A. & Bechhofer, S. SKOS Simple Knowledge Organization System Reference. W3C Recommendation http://www.w3.org/
TR/2009/REC-skos-reference-20090818 (2009).

	44.	 Gorgolewski, K. et al. Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python.
Frontiers in Neuroinformatics 5, 13, https://doi.org/10.3389/fninf.2011.00013 (2011).

	45.	 Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and
Invasive Electrophysiological Data. Computational Intelligence and Neuroscience 2011, 156869, https://doi.org/10.1155/2011/156869
(2011).

	46.	 Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis.
Computational Intelligence and Neuroscience 2011, 879716, https://doi.org/10.1155/2011/879716 (2011).

	47.	 Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S. & Mitra, P. Chronux: A Platform for Analyzing Neural Signals. Journal of
neuroscience methods 192, 146–151, https://doi.org/10.1016/j.jneumeth.2010.06.020 (2010).

	48.	 Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272, https://doi.
org/10.1038/s41592-019-0686-2 (2020).

	49.	 Bartlett, M. S. PERIODOGRAM ANALYSIS AND CONTINUOUS SPECTRA. Biometrika 37, 1–16, https://doi.org/10.1093/
biomet/37.1-2.1 (1950).

	50.	 FAIRsharing Team. FAIRsharing record for: Bibliographic Reference Ontology, https://doi.org/10.25504/FAIRSHARING.99DA5F.
	51.	 DCMI Usage Board. DCMI Metadata Terms. Dublin Core Metadata Initiative http://dublincore.org/specifications/dublin-core/

dcmi-terms/2020-01-20 (2020).
	52.	 Percival, D. B. & Walden, A. T.Wavelet Methods for Time SeriesAnalysis (Cambridge University Press, Cambridge, 2000).
	53.	 Rector, A. L. Modularisation of domain ontologies implemented in description logics and related formalisms including owl. In

Proceedings of the 2nd International Conference on Knowledge Capture, K-CAP ’03, 121-128, https://doi.org/10.1145/945645.945664
(Association for Computing Machinery, New York, NY, USA, 2003).

	54.	 Torre, E. et al. Asset: analysis of sequences of synchronous events in massively parallel spike trains. PLoS Comp. Biol. 12, e1004939,
https://doi.org/10.1371/journal.pcbi.1004939 (2016).

	55.	 Grün, S. Data-Driven Significance Estimation for Precise Spike Correlation. Journal of Neurophysiology 101, 1126–1140, https://doi.
org/10.1152/jn.00093.2008 (2009).

	56.	 Köhler, C. & Denker, M. Neuroelectrophysiology Analysis Ontology (NEAO) Use Case. Zenodo https://doi.org/10.5281/
zenodo.14288030 (2024).

	57.	 Köhler, C. A., Ulianych, D., Grün, S., Decker, S. & Denker, M. Facilitating the sharing of electrophysiology data analysis results
through in-depth provenance capture. eNeuro11, ENEURO.0476–23.2024, https://doi.org/10.1523/ENEURO.0476-23.2024 (2024).

	58.	 Harris, S. & Seaborne, A. SPARQL 1.1 Query Language. W3C Recommendation https://www.w3.org/TR/sparql11-query/ (2013).
	59.	 Stella, A., Bouss, P., Palm, G. & Grün, S. Comparing surrogates to evaluate precisely timed higher-order spike correlations. eNeuro

9, ENEURO.0505–21.2022, https://doi.org/10.1523/ENEURO.0505-21.2022 (2022).
	60.	 Shinomoto, S. et al. Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput Biol 5, e1000433,

https://doi.org/10.1371/journal.pcbi.1000433 (2009).
	61.	 Holt, G. R., Softky, W. R., Koch, C. & Douglas, R. J. Comparison of discharge variability in vitro and in vivo in cat visual cortex

neurons. Journal of neurophysiology 75, 1806–1814, https://doi.org/10.1152/jn.1996.75.5.1806 (1996).
	62.	 Cox, D. R. & Lewis, P. A. W.The Statistical Analysis of Series of Events. Methuen’s Monographs on Applied Probability and Statistics

(Methuen, London, 1966).
	63.	 Jordan, J. et al. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in

Neuroinformatics 12, 2, https://doi.org/10.3389/fninf.2018.00002 (2018).

https://doi.org/10.1038/s41597-025-05213-3
https://doi.org/10.1093/bib/bbv011
https://doi.org/10.3389/neuro.01.007.2009
https://doi.org/10.1016/S0169-023X(97)00056-6
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1371/journal.pone.0154556
https://doi.org/10.1371/journal.pone.0154556
https://doi.org/10.1186/s13326-016-0100-2
https://doi.org/10.1016/j.jbi.2010.10.003
https://doi.org/10.1093/bioinformatics/btt113
https://doi.org/10.1007/s12021-008-9032-z
https://doi.org/10.1186/1471-2202-13-S1-P149
https://doi.org/10.1038/npre.2009.3458.1
https://doi.org/10.1038/npre.2009.3458.1
https://doi.org/10.3389/conf.fninf.2014.18.00044
https://doi.org/10.1093/database/baw017
https://doi.org/10.1093/database/baw017
https://doi.org/10.1371/journal.pone.0223984
https://doi.org/10.5220/0005814004200425
https://doi.org/10.5281/zenodo.5957103
https://doi.org/10.5281/zenodo.5957103
https://doi.org/10.1186/s13326-021-00253-1
https://doi.org/10.25504/FAIRsharing.d3pqw7
https://doi.org/10.25504/FAIRsharing.d3pqw7
http://www.w3.org/TR/2009/REC-skos-reference-20090818
http://www.w3.org/TR/2009/REC-skos-reference-20090818
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/879716
https://doi.org/10.1016/j.jneumeth.2010.06.020
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1093/biomet/37.1-2.1
https://doi.org/10.1093/biomet/37.1-2.1
https://doi.org/10.25504/FAIRSHARING.99DA5F
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20
https://doi.org/10.1145/945645.945664
https://doi.org/10.1371/journal.pcbi.1004939
https://doi.org/10.1152/jn.00093.2008
https://doi.org/10.1152/jn.00093.2008
https://doi.org/10.5281/zenodo.14288030
https://doi.org/10.5281/zenodo.14288030
https://doi.org/10.1523/ENEURO.0476-23.2024
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.1523/ENEURO.0505-21.2022
https://doi.org/10.1371/journal.pcbi.1000433
https://doi.org/10.1152/jn.1996.75.5.1806
https://doi.org/10.3389/fninf.2018.00002

3 0Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

	64.	 Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C. & Grün, S. Statistical evaluation of synchronous spike patterns extracted by
frequent item set mining. Frontiers in computational neuroscience 7, 132, https://doi.org/10.3389/fncom.2013.00132 (2013).

	65.	 Quaglio, P., Yegenoglu, A., Torre, E., Endres, D. M. & Grün, S. Detection and evaluation of spatio-temporal spike patterns in
massively parallel spike train data with spade. Frontiers in computational neuroscience 11, 41, https://doi.org/10.3389/
fncom.2017.00041 (2017).

	66.	 Stella, A., Quaglio, P., Torre, E. & Grün, S. 3d-SPADE: Significance evaluation of spatio-temporal patterns of various temporal
extents. Biosystems 185, 104022, https://doi.org/10.1016/j.biosystems.2019.104022 (2019).

	67.	 Russo, E. & Durstewitz, D. Cell assemblies at multiple time scales with arbitrary lag constellations. Elife 6, e19428, https://doi.
org/10.7554/eLife.19428 (2017).

	68.	 Garijo, D. & Gil, Y. Augmenting PROV with Plans in P-PLAN: Scientific Processes as Linked Data. In Kauppinen, T., Pouchard, L.
C. & Keßler, C. (eds.) Proceedings of the Second International Workshop on Linked Science 2012 - Tackling Big Data (CEUR Workshop
Proceedings, Boston, 2012).

	69.	 Missier, P., Dey, S., Belhajjame, K., Cuevas-Vicenttin, V. & Ludäscher, B. D-PROV: Extending the PROV Provenance Model with
Workflow Structure. In 5th USENIX Workshop on the Theory and Practice of Provenance (TaPP 13) (2013).

	70.	 Bettivia, R., Cheng, Y.-Y. & Gryk, M. R. ProvONE. In Bettivia, R., Cheng, Y.-Y. & Gryk, M. R. (eds.) Documenting the Future:
Navigating Provenance Metadata Standards, 41–56, https://doi.org/10.1007/978-3-031-18700-1_4 (Springer International
Publishing, Cham, 2022).

	71.	 Belhajjame, K. et al. Using a suite of ontologies for preserving workflow-centric research objects. Journal of Web Semantics 32, 16–42,
https://doi.org/10.1016/j.websem.2015.01.003 (2015).

	72.	 Malone, J. et al. The Software Ontology (SWO): A resource for reproducibility in biomedical data analysis, curation and digital
preservation. Journal of Biomedical Semantics 5, 25, https://doi.org/10.1186/2041-1480-5-25 (2014).

	73.	 De Meester, B., Dimou, A., Verborgh, R. & Mannens, E. An Ontology to Semantically Declare and Describe Functions. In Sack, H.
et al. (eds.) The Semantic Web, 46–49, https://doi.org/10.1007/978-3-319-47602-5_10 (Springer International Publishing, Cham,
2016).

	74.	 Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent embeddings for joint behavioural and neural analysis. Nature 617, 360–368,
https://doi.org/10.1038/s41586-023-06031-6 (2023).

	75.	 Smith, B. et al. The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology
25, 1251–1255, https://doi.org/10.1038/nbt1346 (2007).

	76.	 Jackson, R. et al. OBO Foundry in 2021: Operationalizing open data principles to evaluate ontologies. Database 2021, baab069,
https://doi.org/10.1093/database/baab069 (2021).

	77.	 Arp, R., Smith, B. & Spear, A. D.Building Ontologies with Basic Formal Ontology (Massachusetts Institute of Technology, Cambridge,
Massachusetts, 2015).

	78.	 Mungall, C. et al. Oborel/obo-relations: February 2023 release 2 (Major Pipeline Change). Zenodo https://doi.org/10.5281/
zenodo.7665156 (2023).

	79.	 Smith, B. et al. Relations in biomedical ontologies. Genome Biology 6, R46, https://doi.org/10.1186/gb-2005-6-5-r46 (2005).
	80.	 Larson, S. D. & Martone, M. NeuroLex.org: An online framework for neuroscience knowledge. Frontiers in Neuroinformatics 7, 18,

https://doi.org/10.3389/fninf.2013.00018 (2013).
	81.	 Musen, M. A. The protégé project: A look back and a look forward. AI Matters 1, 4–12, https://doi.org/10.1145/2757001.2757003

(2015).
	82.	 Morel, P. Gramm: Grammar of graphics plotting in Matlab. Journal of Open Source Software 3, 568, https://doi.org/10.21105/

joss.00568 (2018).
	83.	 Pröpper, R. & Obermayer, K. Spyke Viewer: A flexible and extensible platform for electrophysiological data analysis. Frontiers in

Neuroinformatics 7, 26, https://doi.org/10.3389/fninf.2013.00026 (2013).
	84.	 Kreuz, T., Mulansky, M. & Bozanic, N. SPIKY: A graphical user interface for monitoring spike train synchrony. Journal of

Neurophysiology 113, 3432–3445, https://doi.org/10.1152/jn.00848.2014 (2015).
	85.	 Brochier, T. et al. Massively parallel multi-electrode recordings of macaque motor cortex during an instructed delayed reach-to-

grasp task. G-Node https://doi.org/10.12751/g-node.f83565 (2017).
	86.	 Brochier, T. et al. Massively parallel recordings in macaque motor cortex during an instructed delayed reach-to-grasp task. Scientific

Data 5, 180055, https://doi.org/10.1038/sdata.2018.55 (2018).
	87.	 Zehl, L. et al. Handling Metadata in a Neurophysiology Laboratory. Frontiers in Neuroinformatics 10, 26, https://doi.org/10.3389/

fninf.2016.00026 (2016).
	88.	 Denker, M., Grün, S., Wachtler, T. & Scherberger, H. Reproducibility and efficiency in handling complex neurophysiological data.

Neuroforum 27, 27–34, https://doi.org/10.1515/nf-2020-0041 (2021).
	89.	 Grewe, J., Wachtler, T. & Benda, J. A bottom-up approach to data annotation in neurophysiology. Frontiers in Neuroinformatics 5, 16,

https://doi.org/10.3389/fninf.2011.00016 (2011).
	90.	 Garcia, S. et al. Neo: an object model for handling electrophysiology data in multiple formats. Frontiers in Neuroinformatics 8, 10,

https://doi.org/10.3389/fninf.2014.00010 (2014).
	91.	 Stoewer, A., Kellner, C. J., Benda, J., Wachtler, T. & Grewe, J. File format and library for neuroscience data and metadata. In Front.

Neuroinform. Conference Abstract: Neuroinformatics 2014, https://doi.org/10.3389/conf.fninf.2014.18.00027 (Frontiers, 2014).
	92.	 Denker, M., Köhler, C., Kern, M. & Kleinjohann, A. Elephant 0.14.0. Zenodo https://doi.org/10.5281/zenodo.10075775 (2023).
	93.	 Köhler, C. A. Alpaca 0.2.0. Zenodo https://doi.org/10.5281/zenodo.10277861 (2023).

Acknowledgements
This work was performed as part of the Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE)
and received funding from the Helmholtz Association of German Research Centres. This project has received
funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under
Specific Grant Agreement No. 945539 (Human Brain Project SGA3), the European Union’s Horizon Europe
Programme under the Specific Grant Agreement No. 101147319 (EBRAINS 2.0 Project), the Ministry of Culture
and Science of the State of North Rhine-Westphalia, Germany (NRW-network “iBehave”, grant number: NW21-
049), and the Joint Lab “Supercomputing and Modeling for the Human Brain.” Open access publication funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 491111487.

Author contributions
C.A.K., S.G., and M.D. conceived the study. C.A.K. and M.D. designed the ontology model. C.A.K. implemented
the ontology, the example analyses, the knowledge graph, and queries. C.A.K. created figures and tables and
C.A.K. and M.D. wrote the initial draft of the paper. C.A.K., S.G., and M.D. reviewed and edited the manuscript.
M.D. and S.G. supervised the study. All authors read and approved the final version of the manuscript.

https://doi.org/10.1038/s41597-025-05213-3
https://doi.org/10.3389/fncom.2013.00132
https://doi.org/10.3389/fncom.2017.00041
https://doi.org/10.3389/fncom.2017.00041
https://doi.org/10.1016/j.biosystems.2019.104022
https://doi.org/10.7554/eLife.19428
https://doi.org/10.7554/eLife.19428
https://doi.org/10.1007/978-3-031-18700-1_4
https://doi.org/10.1016/j.websem.2015.01.003
https://doi.org/10.1186/2041-1480-5-25
https://doi.org/10.1007/978-3-319-47602-5_10
https://doi.org/10.1038/s41586-023-06031-6
https://doi.org/10.1038/nbt1346
https://doi.org/10.1093/database/baab069
https://doi.org/10.5281/zenodo.7665156
https://doi.org/10.5281/zenodo.7665156
https://doi.org/10.1186/gb-2005-6-5-r46
https://doi.org/10.3389/fninf.2013.00018
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.21105/joss.00568
https://doi.org/10.21105/joss.00568
https://doi.org/10.3389/fninf.2013.00026
https://doi.org/10.1152/jn.00848.2014
https://doi.org/10.12751/g-node.f83565
https://doi.org/10.1038/sdata.2018.55
https://doi.org/10.3389/fninf.2016.00026
https://doi.org/10.3389/fninf.2016.00026
https://doi.org/10.1515/nf-2020-0041
https://doi.org/10.3389/fninf.2011.00016
https://doi.org/10.3389/fninf.2014.00010
https://doi.org/10.3389/conf.fninf.2014.18.00027
https://doi.org/10.5281/zenodo.10075775
https://doi.org/10.5281/zenodo.10277861

3 1Scientific Data | (2025) 12:907 | https://doi.org/10.1038/s41597-025-05213-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.
org/10.1038/s41597-025-05213-3.
Correspondence and requests for materials should be addressed to C.A.K.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41597-025-05213-3
https://doi.org/10.1038/s41597-025-05213-3
https://doi.org/10.1038/s41597-025-05213-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Improving data sharing and knowledge transfer via the Neuroelectrophysiology Analysis Ontology (NEAO)

	Background & Summary

	Results

	The Neuroelectrophysiology Analysis Ontology.
	Overview of the NEAO model.
	Solving ambiguities in descriptions with NEAO.
	Grouping methods according to semantic meaning.
	Describing analyses composed by multiple substeps.
	Source information on the data.
	Competency questions.

	Example of annotation of RDF using the NEAO.
	Practical application of NEAO: annotating provenance information.
	Overview of the analysis results.
	In-depth queries for Analysis 1.
	In-depth queries for Analysis 2.
	In-depth queries for Analysis 3.

	Discussion

	Methods

	Implementation of the Neuroelectrophysiology Analysis Ontology.
	Experimental dataset.
	Use case analyses.
	Power spectral density (Analysis 1).
	Surrogate interspike interval histograms (Analysis 2).
	ISIHs of artificial data (Analysis 3).

	Annotation of Python functions with NEAO.
	Provenance capture.
	Knowledge graph and SPARQL queries.

	Acknowledgements

	Fig. 1 Conceptual view of an example analysis of neuroelectrophysiology data.
	Fig. 2 Core model used by the Neuroelectrophysiology Analysis Ontology (NEAO).
	Fig. 3 Grouping of classes describing analysis methods in NEAO.
	Fig. 4 Using NEAO to describe steps in the analysis of neuroelectrophysiolgy data.
	Fig. 5 Analysis 1: Power spectral density (PSD) analysis across trials of a Reach2Grasp recording session.
	Fig. 6 Analysis 2: Interspike interval histogram (ISIH) analysis of surrogate spike trains generated using spike data from a Reach2Grasp recording session.
	Fig. 7 Analysis 3: Interspike interval histogram (ISIH) analysis of artificially generated spike trains.
	Fig. 8 Example illustrating an approach to utilize NEAO classes to annotate Python functions in a script.
	Table 1 Modular structure of NEAO.
	Table 2 Examples of competency questions addressed by NEAO.
	Table 3 Overview of the analysis scenarios presented as use cases for NEAO.
	Table 4 The provenance information in the knowledge graph provides a generic overview of the files stored in the analysis output folder.
	Table 5 Annotation of the provenance information with NEAO identifies the main steps used to generate the results in each analysis.
	Table 6 Annotation of the provenance information with NEAO identifies results with specific content.
	Table 7 NEAO provides specific details for the results of the three PSD analyses.
	Table 8 NEAO provides details for the filtering step used by the PSD analyses.
	Table 9 NEAO provides specific details for the results of the two analyses that computed ISIHs from surrogate spike trains.
	Table 10 NEAO provides specific details for the results of the ISIH analysis of artificially generated spike trains.
	Table 11 Mappings of properties from NEAO to the Alpaca provenance model.

