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Vectorized building rooftop prints 
of the Qinghai-Tibetan Plateau and 
its neighboring regions
Tao Ye   1,2,3,4 ✉, Hongyu Shan1,2,3,4, Jidong Wu1,2,5 ✉, Qiang Zhou6,7,8 ✉, Mingfu Ma6,7,8, 
Wenzhi Zhao   4, Ru Ya1,2,5, Yuan Gao6,7,8 & Lizheng Wu9

Large-scale high-precision building distribution data is important fundation for regional urban planning 
and resource allocation and disaster risk research. The Qinghai-Tibetan Plateau is the third pole of the 
world. Although understanding local human–environment interactions in the Qinghai-Tibetan Plateau 
is critically important, this has been hindered by a lack of high-resolution building footprint data due 
to the vastness and remoteness of the area. In this study, we generated the first vectorized building 
rooftop prints of the Qinghai-Tibetan Plateau and its surrounding areas by using high-resolution Google 
imagery and the building contour extraction algorithm of the AI Earth platform. Our results include 
13.09 million buildings covering 6092.7 km2, validated with a total of 250 × 1 km2 test samples. The data 
had an overall accuracy of 87%, a recall of 91.9%, and an F1 score of 64.8%, thus providing an advanced 
description of the building distribution of the study area as compared to CBRA. Our work has immense 
potential in facilitating exposure assessment for studies on disaster risk in this area.

Background & Summary
The advent of the digital era has increased the demand for reliable data on building distribution and attributes1–3. 
Building distribution data provide important spatial information of not only buildings but also population and 
physical assets4, serving as a good proxy for human activity. In recent decades, building distribution data have 
been widely used in monitoring urban and rural development5,6, understanding the impacts of urbanization on 
food security, biodiversity, climate change, and public well-being and health7,8, formulating regional develop-
ment strategies, and protecting urban and rural ecosystems9–11.

The advancement of satellite-based and airborne imagery, together with recent progress in machine learning 
and deep learning algorithms, has boosted the availability of building distribution data12–14. Building distribution 
data have been provided in raster format as a part of land use/cover data. The most up-to-date release includes 
three 10-m global land use/cover products based on Sentinel satellites, namely Google’s Dynamic World (DW)15, 
Esri’s 2020 Land Cover16, and World Cover 2020 (WC) of the European Space Agency (ESA)17. Besides spatial 
distribution information, researchers are also trying to attach attribute information to building pixels, such as 
building height14. For example, He et al.7 used multi-source remote sensing data fusion to construct the world’s 
first 30-m-resolution urban three-dimensional spatial and temporal sprawl dataset covering the period from 
1990 to 2010. Despite the continuous improvement of spatial resolution, raster-based building distribution data 
still cannot describe spatial objects18, and increasing resolution greatly increases storage and computing costs12.

Building distribution data in vector format, also known as vectorized building rooftop or building footprints, 
are the outline data of a building projected onto the ground in an overhead view19,20, which provide information 
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such as the geographic location, spatial extent of the boundaries, and footprint of a single building. Public ser-
vice providers (e.g., Google Earth and OpenStreetMap) provide open-access vectorized building rooftop data 
with wide coverage, fast updates, and low cost21–23. In 2022, Microsoft Corporation used deep neural network–
based semantic segmentation to extract the outlines of 777 million buildings, some of which containing building 
height attributes, based on Bing Maps (including Maxar and Airbus imagery) from 2014 to 2021 for every conti-
nent outside of China. On May 30, 2023, Google released a dataset of 1.8 billion building outlines extracted from 
0.5-m high-resolution satellite imagery, covering an area of 58 million km2. The low redundancy and compact 
structure of vector data represented by vertices and paths provide higher geographic accuracy independent of 
mesh size, and the introduction of topological rules further improves the integrity of vector data13.

Due to the increase in imagery resolution and the decrease in data acquisition costs, together with recent 
progress in extraction algorithms, the resolution and coverage of building distribution data are continuously 
improving24. The viability of very-high-resolution (VHR) images has enabled the extraction of building foot-
prints by the application of traditional hand-crafted feature-based methods25 or deep learning–based meth-
ods13. As the former approach faces the challenge of diversity of building appearances and sizes, and complex 
rules of thumb and threshold settings, it is limited when applied to large-scale high-resolution remote sensing 
images26. Deep learning–based methods (e.g., convolutional neural networks) have shown effective and superior 
performance in automatically learning high-level and discriminative features in building scene segmentation. 
Sun et al.27 proposed a fusion strategy based on parallel support vector machines to fully utilize deep features 
extracted from multi-scale convolutional neural network structures at different scales, with superior perfor-
mance in extracting complex buildings in urban areas. Nevertheless, when segmenting buildings, the accuracy 
of the model is more likely to be constrained by the quality of the training samples, making extrapolation dif-
ficult. Insufficient use of high-level semantics and omission of low-level details in deep models, resulting in 
edge-blurring and small-building omissions, also hinder the application of deep learning in building footprints 
extraction.

The Qinghai-Tibetan Plateau region is the world’s most elevated area, with an average elevation of >4000 
meters above sea level, and covers an area of 2.5 million km2 28. More than 10 million people inhabit the region 
despite its extreme climate, cold and long winters, large annual and diurnal temperature differences, and poor 
indoor thermal environments. Although this region is the largest ecological barrier in China29, human activ-
ity considerably impacted its vulnerable eco-environment30. This region is also extremely disaster-prone, with 
earthquakes, landslides, mudslides, glacial lake outburst floods, and snow disasters leading to casualty and prop-
erty losses31–33. In response, accurate building distribution data are critical for modelling human activity distri-
bution for coupled human–environment study34,35, as well as exposure and risk analysis for natural disasters36,37. 
In addition, this region has long sunshine hours, abundant solar energy resources, and sufficient solar energy 
collection surfaces such as rooftops and open spaces38,39. High-resolution rural building distribution data could 
provide a reliable database for evaluating photovoltaic potential and efficiently improving the living standards 
of those living in rural areas40,41.

As an underdeveloped region, the Qinghai-Tibetan Plateau and its neighboring areas still do not have a 
complete set of high-precision vectorized building rooftop data, owing to their vast area, sparse building distri-
bution, remote location, and resource constraints. The most ready-to-use data are those provided at the national 
scale of China, which include the 2.5-m gridded China Building Rooftop Area data (CBRA, Liu et al., 2023b) 
and China’s first national land cover map with 1-m resolution (SinoLC) that includes building categories42. These 
raster data are unable to characterize spatial objects and require large storage resources. The vectorized rooftop 
area data for 90 major cities in China released by Zhang et al.13 partly filled this gap; however, only 14 cities in 
the Qinghai-Tibetan Plateau were included in this dataset, and vectorized building rooftop data are still absent 
for an area of 2 million km2.

Therefore, this study aims to generate vectorized building rooftop prints of the Qinghai-Tibetan Plateau and 
its neighboring regions by incorporating high-resolution satellite imagery and deep learning algorithm. Our 
dataset was validated using test samples comprising 250 × 1 km2 grids across various sub-regions, resulting in 
an overall accuracy of 91.92% and an F1 score of 64.81%.

Methods
Framework.  In this study, we utilized building extraction algorithms from the AI Earth platform to gener-
ate a vectorized building rooftop dataset for the Qinghai-Tibetan Plateau and its neighboring region in China 
(Fig. 1). The principal components of our framework included: (1) satellite data and auxiliary data preparation 
and preprocessing; (2) vectorized building rooftop extraction using AI Earth platform; (3) validation using man-
ually vectorized rooftop data.

Study area.  This study mainly focused on the Qinghai-Tibetan Plateau and its neighboring regions in south-
western China under the general framework of the second Tibetan Plateau Scientific Expedition and Research 
Program43; geographically, it includes the Tibetan Autonomous Region, Qinghai Provinces, western Yunnan 
Province, western Sichuan Province, southwestern Gansu Province, and southern Xinjiang Autonomous Region. 
The average elevation of the study area is 4000-m above sea level. The distribution of population and buildings 
in the study area is highly influenced by elevation and climate (Fig. 2), mainly concentrating east of the line from 
Jilong County in Tibet to Qilian County in Qinghai44; in the east, they distribute densely in the plain areas on 
the eastern edge of the region, including the river valleys in Yunnan Province, western Sichuan Province, and the 
Xining-Lanzhou Yellow River Basin. In the plateau surface west of the line, population and buildings are mostly 
distributed with limited agro-pastoral areas along the major river valleys, and along road traffic corridors.
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Satellite imagery.  Open-access high-resolution satellite image data were obtained from Rivermap Co. 
(http://www.rivermap.cn/index.html), which were obtained from Google Earth’s integration of satellite imagery 
and aerial data. Among them, the satellite imagery mainly comes from DigitalGlobe’s QuickBird and WorldView 
commercial satellites, and the aerial photography is sourced from BlueSky in the UK and Sanbornin the US45. 
For each location, there were collections of multiple imageries with resolutions of up to 0.15 m in localized areas. 
Such data integration has been widely used for object recognition in complex scenes46–49 and has the potential for 
large-scale high-resolution mapping of object types50.

The total area of our study area is 3.06 million km2, and the estimated size of the satellite image data is 29.4 TB, 
with a spatial resolution of 0.6 m. Considering these scales, 0.175° × 0.175° fishnets were created for our study 
area to enable smaller-size packages for download, with a total of 10,033 fishnets used to cover the whole study 
area. The actual number of fishnets downloaded was smaller at 5921 for two reasons. First, as a large part of 
the study area comprises non-human residential areas where buildings do not exist, we arbitrarily excluded 
fishnets without any built-up area pixels from the ESA World Cover product. Second, cities/prefectures whose 
vectorized rooftop data (i.e., Lhasa, Shannan, Kunming, Xining, Haidong, Zhangye, Baiyin, Lanzhou, Chengdu, 
Dali, Lijiang, Kunming, Zhaotong, and Yuxi) have been retrieved in the vectorized rooftop area data for 90 cities 
in China13 were also excluded. The images were downloaded during September 2022 and January 2023, with a 

Fig. 1  The framework for building rooftop extraction and validation.

Fig. 2  Study area (population data are from LandScan; DEM is from Resource and Environment Science and 
Data Centre).
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resolution of 0.6 m, a single frame size of ca. 3 GB, and a total size of 2.72 TB. Images downloaded were mainly 
taken from 2019 to 2021, but images from some remote areas may have been taken as early as 2001 (Fig. 3).

Auxiliary data.  Our auxiliary data included high-resolution land cover maps, digital elevation model (DEM), 
normalized difference vegetation index (NDVI), and population distribution data for subsequent cluster analysis 
for the purpose of sampling (Table 1).

For land cover and built-up area, ESA’s World Cover product from Zanaga et al.17 was obtained from Zenodo 
(https://zenodo.org/records/5571936). The product was generated based on Sentinel 1 and Sentinel 2 satellite 
imagery for the entire year of 2020 and a sample of 141,000 unique locations distributed around the world, 
trained with the random forest algorithm, to represent global land cover in 2020; it has an advantage in repre-
senting fine-scale landscape elements (e.g., built-up areas and complex agricultural landscapes), as it considers 
a relatively small minimum mapping unit51. The “built-up” category in the dataset refers to land covered by 
buildings, roads, and other man-made structures (e.g., railroads) but excluding urban green spaces (e.g., parks 
and sports facilities), landfill deposits, and mining sites17.

The 1-km DEM data and NDVI data were obtained from the Resource and Environment Science and 
Data Centre, Institute of Geoscience and Resources, Chinese Academy of Sciences (https://www.resdc.cn/
Default.aspx). The DEM data are resampled from the latest SRTM V4.1 data (https://www.resdc.cn/data.

Fig. 3  Fishnets for image download and image shooting time.

Source Dataset
Spatial-temporal 
Information Description

High-resolution remote sensing image64 0.6 m Obtained from Google Earth

2020 ESA World Cover65 10 m Land cover data developed based on both Sentinel-1 and Sentinel-2 
data with a global overall accuracy of about 75%

China National 1 km DEM (based on SRTM)66 1 km Resampled from 30 m SRTM V4.1

LandScan Population67 1 km, 2021 Population distribution data based on high-resolution imagery 
exploitation, and a multi-variable asymmetric modeling approach

China Annual 1 km NDVI68 1 km, 2021
Based on the MODIS 16-day 250 m EVI product (MOD13Q1.061), 
synthesized using the maximum value synthesis method and then 
resampled to 1 km

China Building Rooftop Area (CBRA)69 2.5 m, 2021 Generated based on Sentinel-2 and deep learning algorithms with 
OA of 83%

Table 1.  List of data used to generate and valid our datasets.
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aspx?DATAID=123), and the NDVI data are mosaiced based on SPOT/VEGETATION PROBA-V 1-km 
products (http://www.vito-eodata.be). We chose the NDVI data of 2021 to represent vegetation on the 
Qinghai-Tibetan Plateau (https://www.resdc.cn/DOI/DOI.aspx?DOIID=49). Population density data were 
obtained from the LandScan database (https://landscan.ornl.gov/) for global vital statistics analysis developed 
by the U.S. Department of Energy’s Oak Ridge National Laboratory and provided by East View Cartographic 
(https://geospatial.com/); these data are generated by combining geospatial science, remote sensing technology, 
and machine learning algorithms, representing one of the most accurate and reliable global population dynamic 
statistical analysis databases based on geographic location, with superior resolution at 1 km52. We used the pop-
ulation distribution in 2021 for subsequent cluster analysis.

Data pre-processing.  The distribution of population and buildings is scattered for most of our study area, 
with over 99.5% of the study area categorized as non-built-up areas according to the ESA’s World Cover prod-
uct17. To expediate our extraction, masks of potential building distribution area were first generated for each 
0.175° × 0.175° fishnet before extraction. Based on the “Built-up” category in the World Cover data, a 1-km buffer 
zone surrounding each built-up area pixel was generated as the potential building distribution area. After testing 
several buffer zone widths, we found that a width of 1 km could accommodate 96% of the building pixels reported 
in the CBRA products of 2020. The mask enabled us to exclude 86% of the total area of the downloaded imageries, 
consequently saving substantial computational time. We analyzed the buffer using an overlay with the generated 
fishnets to exclude nets that did not contain buildings. The images were then cropped again with buffers, and then 
the building extraction algorithm was applied to the cropped images.

Vectorized building rooftop extraction.  The vectorized building rooftop extraction algorithm used in 
this study is from the AliCloud AI Earth platform (https://engine-aiearth.aliyun.com/#/), which combines a deep 
learning–based segmentation method with a watershed-based segmentation method to construct a building 
instance segmentation framework - double decoder for watershed segmentation. This algorithm adds a boundary 
segmentation task to the semantic segmentation task, and uses the watershed algorithm to preprocess the pre-
diction results of the two tasks during prediction, obtaining the final building extraction result. The PointRend 
neural network proposed by Kirillov et al.53 is used first53, which treats image segmentation as a rendering prob-
lem and employs an iterative segmentation algorithm that selectively samples non-uniform points for accurate 
segmentation, as more stable and accurate seed points learned by the neural network can provide finely tuned 
semantic segmentation models for key structures and features of the building. Subsequently, a flexible watershed 
segmentation is used for post-processing54,55, which is able to adapt to objects with different morphologies and 
features. The algorithm achieves a counting accuracy of >90% and an area estimation accuracy of >85% in val-
idation testing based on manual vectorized samples in different regions of China, winning second place in the 
all-weather SAR image building segmentation competition SpaceNet6. Compared to Mask Region-CNN, the 
algorithm improves the mean average precision by 11 percentage points56.

Data Records
The vectorized building rooftop extraction algorithm used in this study can be called on the AI Earth platform 
(https://engine-aiearth.aliyun.com/#/). Our dataset is available from the National Tibetan Plateau Data Centre, 
which can be accessed at https://doi.org/10.11888/RemoteSen.tpdc.30117057. All data are obtained using the 
GCS_ WGS_ 1984 coordinate system and packaged into.rar files (Table 2). The generated AI-based building 
contour data (Fig. 4) is arranged on province level according to their name, including Gansu, Guizhou, Qinghai, 
Sichuan, Xinjiang, Xizang, and Yunnan. In addition, image data of the corresponding 250-km2 grid and manu-
ally drawn verification data from original sources were also uploaded in ‘image_1km.rar’ and ‘test_1km.rar’. The 
year of image acquisition in Fig. 3 is in ‘image_time.rar’.

Technical Validation
Validation data preparation based on stratified sampling.  Manually building rooftop vectorization 
was conducted to derive “ground-truth” building rooftop data for validation purposes. Due to the vast area of our 
study area, as well as substantial regional differences in terms of elevation, landform, vegetation type, and building 
type, we used a stratified sampling approach instead of random sampling to obtain a balanced sample in terms of 
different sub-regions. We performed K-means clustering58 on the 5921 fishnets based on five indicators: built-up 
area, mean NDVI, population density, mean elevation, and standard deviation of elevation. K-means clustering is 
a clustering algorithm based on Euclidean distance, in which the closer the distance between the characteristics 
of two targets, the greater the similarity. After standardizing the data by subtracting the mean and dividing by the 

Filename Description File type

image_1km High resolution image of 250 1 km2 grids for 
validation GeoTIFF

image_time Acquisition time of image in each fishnet ESRI Shapefile

ztest_1km Manually vectorized building contours from 
original sources in 250 validation grids ESRI Shapefile

gansu, guizhou, qinghai, sichuan, 
xinjiang, xizang, yunnan

AI based building contour extraction results 
on province level ESRI Shapefile

Table 2.  Information of files in generated datasets.
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standard deviation, the elbow method was used to select the most suitable number of categories59. During the 
process, when the number of categories was increased to five, the rate of decrease of the sum of squared errors 
declined rapidly. Therefore, we clustered the 5921 fishnets into five categories for subsequent analyses (Table 3, 
Fig. 5).

Cluster I (plateau surface & low building density zone) covers a large area on the plateau surface of the 
Qinghai-Tibetan Plateau—with the widest area and the flattest terrain—and is characterized by high elevation, 
low population, low vegetation cover, and low built-up area. Fishnets in Cluster II (high altitude & mid-to-low 
building density zone) are mainly located at the border regions of Qinghai, Sichuan, and Tibet, and are mostly 
covered with alpine meadows and shrubs, and mainly the headwaters of large rivers in China. However, the 
climate conditions of Cluster II are relatively harsh, resulting in a relatively sparse population and buildings 
here. Fishnets in Cluster III (largest terrain relief & mid building density zone) have the greatest variability in 
elevation, located mainly in the topographic transition zone around the plateau. Cluster IV (mid-low altitude 
& mid-high building density zone) mainly includes Gansu and Yunnan provinces in the eastern part of the 
Qinghai-Tibetan Plateau, with relatively low elevation, lush vegetation, and dense population and buildings. 
Cluster V (low altitude & high building density zone) has the smallest number of fishnets but the most urban 
area, the lowest average elevation, and the highest population and building densities.

A total of 250 fishnets were then selected based on the division of clusters; within each fishnet, a 1-km2 grid 
was used to prepare ground truth data for accuracy validation, which yielded a sampling rate of 4.22% (250/5921 
fishnets) or 0.093% (250 km2/267904 km2 buffer mask). The number of the sampling fishnets selected for each 
cluster is proportionate to its total size. Within each cluster, we give priority to fishnets with large built-up area 
in ESA’s World Cover product. During this process, we also attempted to avoid selecting neighboring fishnets 
so that the sample could guarantee a better spatial coverage. The final distribution of selected fishnets is shown 
in Fig. 5. Each sampled fishnet was then divided into 1-km2 grids, and the grid with the largest built-up area 

Fig. 4  Extraction results.

Cluster
Count of 
fishnets

Average 
DEM

Standard 
deviation of DEM

Average 
NDVI

Average 
Population

Build 
Area

Sample fishnets 
selected

I 1947 3767 220 2061 3717 58820 81

II 1670 3992 230 6548 12818 107045 60

III 1045 2933 587 5740 15867 153031 50

IV 1193 1860 247 6110 82823 700123 51

V 66 1589 221 5313 188467 2384441 8

Table 3.  Statistics for different geographical clusters.
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according to ESA’s World Cover product was selected for manual building rooftop vectorization. Finally, we 
obtained a total of 149,035 manually outlined buildings with a total area of 24.65 km2.

Validation result.  We used a quantitative approach12 to validate our extraction results, referring to a 
multi-criteria hierarchical evaluation system for evaluating buildings extracted based on remote sensing (Zeng et al.60). 
Based on the manually vectorized building rooftop data, the match rate metrics (Table 4) of the 250 × 1 km2 grids, 
including overall accuracy (OA), precision, recall, and F1 score for precision evaluation61, were computed based 
on the confusion matrix62.

The OA of our result is 87%, indicating that our dataset has high credibility in extracting buildings and 
excluding backgrounds (Table 5). However, a precision score of 50.1% indicates that approximately half of build-
ing rooftop areas extracted are incorrect, which is mainly due to false prediction of building spacing in areas of 
high building density (e.g., in high-density built-up areas where the spacing between buildings is small). The 
recall of our results is approximately 92%, which means that manually vectorized building roofs can be mostly 
extracted by the algorithm. Our results were slightly better than CBRA12 and the vectorized rooftop area data 
for 90 cities in China13. Compared with our result, based on our validation dataset, CBRA has a comparable OA 
but relatively small precision, recall, and F1 score. The vectorized rooftop area data for 90 cities in China were 
reported to have an OA of 83.4% and a recall of 79.0%12, which may be due to the image semantic segmentation 
model it used lacking a specialized extraction module.

The performance of our extraction differed by fishnet clusters, suggesting the challenges of distinguishing 
rooftop from environmental background, and proving the reasoning of adopting stratified sampling in valida-
tion (Table 5). There are pronounced differences in the OA and recall between clusters. In general, OA decreases 
but recall decrease with the decrease of average altitude and the increase of built-up area. However, the dif-
ference in precision between clusters is relatively small, indicating that the proportion of real buildings in the 
extracted results of each cluster is relatively close.

To further understand the challenges of extraction, the visualization results of elements in the confusion 
matrix (TP, TN, FP, and FN) for different clusters are shown in Figs. 6–10; each sub-image corresponds to a 
sampled 1 km2 grid, with the original image on the left, the extracted results from this study in the middle, and 
the results of the CBRA product on the right. Elements in the confusion matrix—TP, TN, FP, and FN—corre-
spond to correct building, correct background, misidentified building, and unidentified building in the legend, 
respectively. Validation metrices are also supplied below their corresponding results.

Cluster I mainly covers the plateau surface area of Qinghai-Tibetan Plateau, which is the largest and flattest 
among the five clusters, with sparse vegetation and widespread bare land. The buildings in this cluster mainly 
exhibit sparse distribution on a large scale and dense distribution locally (Fig. 6a); it has the highest OA (94.6%) 
and precision (52.7%) among the five clusters, but the lowest recall (78.8%) and F1 score (60.6%). The low recall 
indicates that there is still a considerable portion of buildings in the cluster that have not been extracted by the 
algorithm. However, the high OA is maintained in this cluster due to the small area of buildings relative to the 

Fig. 5  Geographical zoning map and fishnets for creating validation dataset.

https://doi.org/10.1038/s41597-025-05266-4


8Scientific Data |         (2025) 12:1013  | https://doi.org/10.1038/s41597-025-05266-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

large area of background. The roofs in densely populated local places are mainly white and blue, including some 
large industrial plants (Fig. 6a). Their difference from bare land gives the relevant 1-km grids high extraction 
accuracy (approximately 100% OA and recall). The houses in sparsely distributed areas are mostly single-story 
residential buildings, with gray-black roofs that are less distinguishable from the surrounding bare land, result-
ing in FN (e.g., the scattered buildings in the bottom-right corner of Fig. 6d). In this cluster, CBRA has a com-
parable OA but relatively small recall, precision, and F1 score according to our validation dataset; its high OA is 
also due to its correct recognition of large areas of background.

Cluster II is mainly located in the high-altitude area in eastern Qinghai-Tibetan Plateau; its population and 
built-up area are slightly larger than those of cluster I, with a higher number of settlements, but still the general 
distribution of buildings is relatively sparse. This cluster has a relatively higher OA (87.9%) and a relatively lower 
precision (48.6%) among the five clusters (Table 5); it has many red-tiled and blue-roofed masonry buildings, 
making it easier to distinguish the buildings from the brown bare ground. This results in a remarkable improve-
ment in recall (87.5%), and the issue of missing building blocks (FN) is also relieved, as compared to cluster I. 
However, as the number of buildings increases, the amount of FP also begins to rise. The CBRA product has a 
good recall (49.4%) in this cluster but experiences difficulty in extracting individual buildings (Fig. 7).

Cluster III is a transitional area from high altitude mountainous plateaus to low altitude hilly plains. As 
altitude decreases, population density and built-up area further increase. It has the largest terrain relief among 
the five clusters. The buildings in this cluster are mainly concentrated in low mountain and valley areas and are 
distributed along rivers and contour lines (Fig. 8a). At the same time, a certain number of high-rise residential 
buildings appear in the cluster, whose rooftops are mostly gray with obvious edges, and a relatively large distance 
between them (Fig. 8d). Therefore, the algorithm is more precise when extracting their rooftop contours com-
pared to other buildings, yielding a high recall for this cluster (91.8%). However, shadows caused by high-rise 
buildings and mountains resulted in increased FNs, and the background pixels at the shadow edges were mis-
identified by the algorithm, leading to some FPs. CBRA also has better validation metrics in this cluster com-
pared to clusters I and II, as it can identify the buildings in the main densely populated areas. However, it also is 
negatively impacted by building shadows (FP, bottom of Fig. 8a).

Cluster IV is mainly located in valley and small-plain areas with lower elevations and flatter terrain around 
the plateau. It has a larger average built-up area, more population, and more large-scale individual buildings 
than clusters I–III, and the arrangement of buildings in this cluster is more orderly (Fig. 9a,d). Based on this 
context, the OA (75.7%) of this cluster is smaller, whereas the precision (52.5%), recall (93.8%), and F1 score 
(66.7%) are all higher to varying degrees compared to clusters I–III. For buildings with clear boundaries and 
large rooftop areas, our results maintain their integrity and sharp edges. Our results well capture contiguous 
building areas, and the extraction of external envelope lines is very successful. However, our method struggled 
to distinguish densely connected buildings, such as apartment buildings, whose building spacing is often small. 
This difficulty led to blob-like segmentation results. For example, in the densely populated area shown in Fig. 9d, 
the open spaces between buildings have similar spectral features to the buildings, and the distance between adja-
cent buildings is small. Although this phenomenon also exists in CBRA, relatively speaking, our results have a 
lower proportion of FP by identifying some small roads in dense building areas (Fig. 9d). At the same time, both 
products did not mistakenly identify the main road as a building, indicating that they can effectively distinguish 
the characteristic differences between roads and buildings63.

Metric Description

True Positive (TP) Correctly extracted building roof plots

False Positive (FP) Background misclassified as a sample of a building roof

True Negative (TN) Parcels correctly categorized as background

False Negative (FN) Roofs of buildings misclassified as background

Overall Accuracy (OA, %) (TP + TN)/(TP + FP + TN + FN) Proportion of correctly recognized buildings and background

User Accuracy/Precision (%) TP/(TP + FP) Proportion of real buildings in the results

Producer Accuracy/Recall (%) TP/(TP + FN) Proportion of extracted buildings in validation data

F1 Score (%) 2 × TP/(2 × TP + FP + FN) Weighted average of the precision and the recall

Table 4.  Evaluation metrics.

Cluster Grids

OA Precision Recall F1 Score

Our CBRA Our CBRA Our CBRA Our CBRA

I 81 94.6 90.2 52.7 22.7 78.8 36.7 60.6 24.6

II 60 87.9 82.2 48.6 30.7 87.5 49.4 61.6 36.2

III 50 88.2 85.0 48.6 36.8 91.8 59.1 62.5 44.4

IV 51 75.7 72.0 52.5 47.3 93.8 72.1 66.7 56.5

V 8 72.0 66.8 52.6 48.4 96.3 87.4 67.5 61.8

Whole Grids 250 87.0 82.7 50.1 40.2 91.9 67.2 64.8 50.3

Table 5.  Performance metrics for building rooftop extraction results.
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Cluster V mainly comprises densely populated urban areas with low and flat terrain around the plateau. Its 
OA (76.8%) is the lowest among all clusters, mainly due to the increase in FP and the decrease in TN (Fig. 10e). 
However, this cluster has the highest recall (96.3%) and F1 score (67.5%) among the five clusters. The high recall 
indicates that most of the buildings in the cluster can be extracted by the algorithm (Fig. 10b,e), which may be 
because it has been well trained by the AI Earth platform based on urban areas with high building density. At the 
same time, the urbanization level of this cluster is higher, and there are fewer dense and small scattered build-
ings that are difficult to distinguish from the background, which slightly improve precision (0.4%) and F1 score 
(1.4%) compared with cluster IV. CBRA is similar to our results, but there is also a problem of FN in areas of high 

Fig. 6  Accuracy evaluation for Cluster I (a,d: raw image; b,e: our results; c,f: CBRA).

Fig. 7  Accuracy evaluation for Cluster II (a,d: raw image; b,e: our results; c,f: CBRA).
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building density. For the special case of small buildings at the top of a large-area building (Fig. 10a,b), our results 
consider the bottom building as the background value, whereas CBRA can fully extract the entire building.

Usage Notes
The high-resolution building rooftop prints extracted based on AI Earth building rooftop extraction algorithm 
in the Qinghai-Tibetan Plateau and its neighboring region is suitable for research on large-scale building distri-
bution, spatial structure, urbanization process, and human activity intensity. In a complex and ecologically sen-
sitive region like the Qinghai-Tibetan Plateau, such building data can provide important support for urban and 

Fig. 8  Accuracy evaluation for Cluster III (a,d: raw image; b,e: our results; c,f: CBRA).

Fig. 9  Accuracy evaluation for Cluster IV (a,d: raw image; b,e: our results; c,f: CBRA).
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rural planning, infrastructure assessment, and research on human land relationships. In addition, it can provide 
building exposure data foundation for disaster risk assessment and ecological protection planning.

Our dataset also offers original data of 250 × 1 km2 manually vectorized building rooftop data. Although 
the coverage is small as compared to the area of the study area, it is very suitable as benchmark data to eval-
uate the accuracy and stability of automated building extraction algorithms due to its high accuracy and 
controllable errors. In addition, it can also be used for more detailed research tasks such as building density 
analysis, micro scale urban structure research, and architectural style recognition. If further combined with 
ground measurements, it can serve as an important data foundation for architectural research in high-altitude 
special areas.

Our method to some extent balances the convenience of data acquisition and the efficiency of 
automated processing, but there are still some limitations that cannot be ignored from multiple 
perspectives.

Firstly, from the perspective of data sources, although the remote sensing images provided by Google Earth 
have high resolution, they enable us to obtain data covering the entire research area at a lower cost. However, 
due to the large research area, these images are not uniform, and there are differences in clarity, lighting condi-
tions, and shooting angles among images obtained from different regions and at different times. Some images 
of fishnet can be traced back to 2001, with low resolution, resulting in less detailed spatial information and 
greatly reducing extraction accuracy. In the future, this problem can be solved by replacing these images with 
newer ones.

Secondly, from an algorithmic perspective, the building extraction algorithm of Alibaba Cloud AI Earth plat-
form performs well overall in the Qinghai-Tibet Plateau scene. However, due to the influence of easily confused 
backgrounds, there are still adhesion phenomena in densely built areas, especially in scenes with Tibetan style 
buildings or small settlements on the plateau that are dense but strongly obscured, and the accuracy of building 
contour extraction will decrease. In the future, deep-learning-based edge detection modules can be further 
added to the extraction algorithm to enhance the extraction of architectural form features.

Lastly, as for the extraction results, due to the use of masks from ESA’s 10 m land cover products, there may 
be a small number of scattered building areas with built-up areas less than 100m2 that are missing. In addition, 
historical images can be used to generate a dynamic distribution of buildings over many years in the future to 
provide more detailed building information.

Code availability
No custom code was used to generate or process the first vectorized building rooftop prints of the Qinghai-
Tibetan Plateau and its neighboring regions. The website of AI earth platform is https://engine-aiearth.aliyun.com/. 
The software used in the technical validation of our dataset was ArcMap version 10.8.
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Fig. 10  Accuracy evaluation for Cluster V (a,d: raw image; b,e: our results; c,f: CBRA).
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