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EEG dataset from playing 
Multiplayer Online Battle Arena 
games in natural settings
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Dong-Dong Zhou   1 ✉ & Li Kuang3

Mobile Multiplayer Online Battle Arena (MOBA) games have emerged as one of the most popular 
gaming genres, yet the underlying neurophysiological mechanisms contributing to their addictive 
potential remain unclear. In this study, 23 participants played six real matches of Honor of Kings while 
synchronized 64-channel EEG recordings were conducted. We provide EEG data collected during 
gameplay, alongside corresponding video recordings. Additionally, we developed an experimental 
protocol that accurately marks the timestamps of player kills and deaths within the EEG data. This 
allows for an investigation of neurophysiological responses to kills and deaths at a millisecond-level 
time scale within actual MOBA gameplay. Furthermore, we include resting-state EEG data recorded 
in both eyes-open and eyes-closed conditions, as well as participants’ demographic information 
and scores related to gaming addiction, impulsivity, and emotional regulation. This dataset aims 
to contribute to the understanding of neurophysiological responses in natural MOBA gaming 
environments, providing open access resources with high ecological validity.

Background & Summary
Online gaming has become a significant form of entertainment for a vast number of internet users, encom-
passing a wide variety of genres. Among these, Multiplayer Online Battle Arena (MOBA) games have gained 
immense popularity due to their competitive fairness and real-time engagement1. With the continuous advance-
ment of mobile technology, users can now access MOBA games conveniently on portable devices, leading to 
a growing user base, particularly in Asia2. However, excessive engagement with gaming can result in Internet 
Gaming Disorder (IGD), significantly impacting individuals’ academic performance, daily life, and interper-
sonal relationships. Recent studies indicate that the prevalence of IGD stands at 13.4%, with approximately 
49.4% of cases associated with MOBA games3. This underscores the importance of further investigating the 
mechanisms underlying gaming and gaming addiction.

Research on the neuroimaging of gaming has been increasing, revealing that gameplay can alter brain struc-
ture and function4–7. Some studies suggest a negative impact of gaming on cognitive control8, while others indi-
cate potential improvements in cognitive function9,10. Differential neural responses are observed across various 
game genres11, yet many previous studies have not specifically distinguished between addictive game types, 
possibly contributing to the heterogeneity observed in IGD research12,13. For instance, Na et al.14 highlighted that 
different risk factors for addiction exist across gaming genres, suggesting that intervention strategies should con-
sider specific game types14. Balhara et al.15 emphasized the need for clear definitions regarding game types when 
addressing gaming addiction15. Therefore, it is essential for future research to investigate the neurophysiological 
mechanisms of addiction and intervention strategies specific to particular game genres.

Most existing research has been conducted under experimental conditions, which may limit ecological valid-
ity; thus, there remains a lack of studies conducted in natural gaming environments. Some researchers, however, 
have made meaningful attempts in this area. For example, Long et al. (2024) recorded functional near-infrared 
spectroscopy (fNIRS) while participants played League of Legends, revealing frontal region activations related 
to key in-game events, influenced by physiological arousal and individual player characteristics16. Klasen et al. 
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(2020) used functional magnetic resonance imaging (fMRI) during gameplay of Carmageddon, finding that 
non-violent successes activated the ventral striatum, whereas violent successes specifically activated the dorsal 
striatum, with subjective game experiences correlating with activation in the putamen and medial prefrontal 
cortex during violent successes17. These neuroimaging studies conducted in real gaming contexts demonstrate 
that key in-game events can elicit changes in brain activity associated with reward systems and cognitive control. 
Additionally, Xi et al. (2022) proposed a reinforcement-based model of gaming addiction, positing that frequent 
direct rewards obtained during gameplay positively reinforce gaming behavior, leading to its repetition18. Such 
evidence suggests that IGD research should also focus on key events occurring during real gameplay.

Given the dynamic nature of real gaming, EEG offers a valuable method for observing brain activity in nat-
uralistic settings due to its high temporal resolution. Our dataset features experienced mobile MOBA gamers, 
from whom resting-state EEG data were collected prior to gameplay. We simultaneously recorded their real-time 
EEG signals during gameplay and designed an experimental protocol to accurately mark the timestamps of 
kills and deaths during MOBA game. This approach allows for a higher temporal resolution analysis of play-
ers’ neurophysiological responses following key events in real gameplay. Additionally, we assessed participants’ 
emotional regulation abilities, levels of gaming addiction, and impulsivity through scales, as these psychological 
traits are closely linked to gaming behavior19–21. We believe this dataset will facilitate to explore the relationship 
between psychological characteristics and neurophysiological responses following key events in gameplay, and 
a deeper understanding of the neurophysiological responses of MOBA gamers in natural settings.

Methods
Overall design.  Data collection for this study commenced in April 2023 and concluded in July 2023. 
Prior to the study, all participants underwent screening for psychiatric disorders using the Mini-International 
Neuropsychiatric Interview (M.I.N.I)22. Participants completed three tasks: (1) scale assessments; (2) resting-state 
EEG recordings; and (3) EEG recordings during MOBA gameplay. The conduction of the experiment was in 
accordance with the Declaration of Helsinki. This study was approved by the Ethics Committee of University-
Town Hospital of Chongqing Medical University (Approval No. LL-202307).

Participants.  A total of 23 voluntary participants were recruited via online advertisement, comprising 15 
males and 8 females, with a mean age of 19.70 years. All participants were right-handed and had a minimum 
of one year of MOBA gaming experience. Prior to participation, all subjects provided written informed con-
sent after receiving comprehensive explanations of the research procedures. This consent specifically included 
explicit permission for public sharing of both their EEG data and MOBA gameplay videos for scientific purposes. 
Importantly, they also assured that their virtual game identifier could not be linked to real-world identities, thus 
fully protecting participant privacy. Each participant received 100 CNY upon completion of all experimental 
tasks. For minors under 18 years of age, both the participants and their legal guardians were fully briefed and 
provided written consent for participation and data sharing.

Exclusion criteria included: (1) a history of head injury or neurosurgery; (2) current or past diagnoses of 
neuropsychiatric disorders; and (3) chronic physical illnesses. Participants were instructed to ensure adequate 
sleep in the week leading up to the study and to abstain from psychoactive substances such as tobacco, alcohol, 
and caffeine.

Scale assessments.  Participants were informed that there were no right or wrong answers to the scale 
items and were encouraged to respond truthfully. For each scale, instructions were provided to participants, who 
selected the most applicable option for each item. Any questions were addressed by trained researchers to ensure 
participants understood the items clearly. The following scales were used:

	 a.	 Demographic Questionnaire: Demographic data comprised gender, age, height, weight, MOBA gaming 
rank (e.g., Diamond, Master), and weekly MOBA gaming duration (hours).

	 b.	 20-item Internet Gaming Disorder (IGD-20): This scale comprises six factors: salience, mood modifica-
tion, tolerance, withdrawal, conflict, and relapse, totaling 20 items with a 5-point rating scale (1 = strongly 
disagree, 5 = strongly agree). Higher scores indicate greater levels of gaming addiction23,24.

	 c.	 Barratt Impulsiveness Scale (BIS-11): This scale includes three subscales: nonplanning impulsiveness, 
motor impulsiveness, and attentional impulsiveness, each with 10 items rated on a scale from 1 to 4. The 
Chinese version adjusts the scoring range to 1–5, with higher scores reflecting greater impulsivity25,26.

	 d.	 Difficulties in Emotion Regulation Scale (DERS): Comprising 36 items, this scale assesses six dimensions: 
non-acceptance of emotional responses, difficulties engaging in goal-directed behavior, impulse con-
trol difficulties, lack of emotional awareness, limited access to emotion regulation strategies, and lack of 
emotional clarity, rated on a 5-point Likert scale. Higher total scores indicate poorer emotional regulation 
ability27,28.

EEG online recording.  Participants were tested in a quiet room using Curry 8 software and the 
Neuroscan 64-channel EEG recording system, adhering to the 10–20 international electrode placement 
system, with electrode resistance maintained below 10 kΩ (Fig. 1a,b). An online reference electrode was 
positioned at the midpoint between Cz and Cpz, with an online filter range of 0.05–400 Hz and a sampling 
rate of 1000 Hz.
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Fig. 1  Experimental materials. (a) 64-channel electrode cap; (b) Electrode distribution and impedance display 
during an experiment with a participant; (c) Specifications of the Xiaomi phone used for the experiment; (d) 
Login interface of the game “Honor of Kings”.

Fig. 2  Illustration of simultaneous EEG recording, screen mirroring, and video recording while participants 
play the MOBA game.
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Resting-state task.  Participants completed a total of 14 minutes of resting-state EEG recording, with 7 min-
utes collected in the eyes-open condition while fixating on a “+” displayed on a computer screen, and 7 minutes 
in the eyes-closed condition, remaining awake without falling asleep. During EEG collection, participants were 
instructed to minimize bodily movement.

MOBA Game Task.  All gameplay involved the MOBA game Honor of Kings (Fig. 1d), developed by Tencent’s 
TiMi Studio. The game features various modes including 1v1, 3v3, and 5v5. In this study, participants engaged 

Fig. 3  Illustration of determining precise time points for key events. (a) Example of the method for calculating 
precise time points during frame-by-frame video review. (b) Method for determining the time points of kills 
and deaths; (c) Establishing the start time for EEG recording.
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in the 5v5 ranked mode, which involves 10 players divided into two teams. Players control chosen characters 
to destroy the opposing team’s base while protecting their own, with typical game durations of 10–20 minutes. 
Victory is achieved by destroying the enemy base or securing a surrender. Players accumulate rank points for 
victories, with rankings ranging from Bronze to Glory King.

All participants used a uniform Android device (Xiaomi 11 Pro) specifically for this study. The device 
operated on Android, had 8GB RAM, and a 6.81-inch screen with a resolution of 3200 × 1440 pixels (Fig. 1c). 
The device utilized a 5 G network for optimal gameplay performance. Each participant logged into their game 
account, and those typically using Apple devices were provided with a suitable Android account for game-
play. Throughout the experiment, participants played six matches of the MOBA game. Game audio was played 
aloud to enhance immersion and replicate authentic gameplay conditions. Researchers informed participants 
to play in their usual manner, emphasizing that their performance would not be evaluated or affect the study. 
Participants were then instructed to minimize large movements during gameplay and to freely choose their 
characters based on their preferences and analyses of the game situation.

The experimental procedures were conducted following the methodologies presented in Figs. 2, 3. The gam-
ing device was connected to the EEG recording computer via USB. The gameplay was displayed on the computer 
through EVScreenMirror, utilizing USB for screen mirroring with a frame rate of 60 fps. We customized a fea-
ture with Hunan Yiwei Information Technology Co., Ltd. that allowed real-time display of the screen mirroring 
delay in milliseconds in the upper left corner of the computer screen, with an average error of 6.84 ms (Fig. 4). 
Simultaneously, we used EVCapture to record both the EEG data and the gameplay footage, with a recording 
frame rate set to 60 fps and saved in AVI format. The collection of EEG data and screen recording concluded 
after all six matches were completed. After each match, participants were allowed a brief rest before starting the 
next one, and recordings continued uninterrupted during these breaks.

Acquisition of critical event timestamps.  Post-experiment video analysis was performed by two raters 
(DDZ and HZL) working independently. Using Wondershare Filmora (Wondershare Technology Co., Ltd.), 
they examined each video frame (16.67 ms/frame) to objectively identify and record timestamps for all critical 
in-game events, establishing a reliable event marker dataset. The key events recorded included game start, kills, 
deaths, game victory, and game defeat. The method for determining the timestamps of these events based on 
frame-by-frame analysis is illustrated in Fig. 3. We conducted a frame-by-frame comparison to identify the exact 
moments key events occurred, utilizing the progress bar in the software to convert the specific frames into mil-
liseconds. Due to inherent delays in data transmission when the gameplay was mirrored from the mobile device 
to the computer, the timestamps for all key events were adjusted by subtracting the mirroring delay to reflect the 
actual occurrence time of these events.

It is essential to note that the timestamps for the occurrence of key events are based on the video record-
ing. Therefore, we also determined the timestamp marking the beginning of EEG data recording in the video 
(T0). By subtracting T0 from the timestamps of key events, we calculated the latencies of these events in the 
EEG data (Fig. 3). The timestamps for the occurrence of each event were determined as follows: (1) EEG Start 
Time (T0): As illustrated in Fig. 3c, T0 was calculated by subtracting the Curry8 recording timestamp from 
the corresponding video frame time when the temporal counter transitioned in the Curry8. Two independ-
ent evaluators derived four T0 measurements (pre-first match and post-final match). The modal value was 
selected as the definitive T0 for event latency computations. (2) Game Key Events: The first frame indicating 
an increase in the numbers for “kills” and “deaths” on the scoreboard determined the timestamps for these 

Fig. 4  Example of calculating screen mirroring delay error. (a) Schematic diagram of the method for estimating 
screen mirroring delay error; (b) Results of 100 calculations of screen mirroring delay error.
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events, as illustrated in Fig. 3b. We designated the following markers for key event types in the EEG data: kills 
were marked as 13; deaths as 14; game start as 66; game victory as 666; and game defeat as 444. The event 
marker files in TXT format have been made publicly accessible through the OpenNeuro repository under the 
directory ‘\derivatives\markers’.

Data Records
All data are available in BIDS format29,30, and uploaded to the OpenNeuro site31. The main folder of this 
dataset contains 23 folders—one for each participant—and a derivatives folder that includes pre-processed 
data and code for reproducing the figures and technical validation31. This folder also contains four files: (1) 
“data-description.json” which describes the dataset; (2) “participants.tsv” containing participant information 
such as sex, age, MOBA gaming rank (e.g., Diamond, Master), weekly MOBA gaming duration (hours), and 

Fig. 5  EEG preprocessing pipeline.

Fig. 6  Reliability analysis. (a) Inter-rater reliability across all subjects; (b) Temporal Reliability across all 
subjects; (c) Inter-rater reliability for each MOBA game round in sub01, sub02, and sub11; (d) Temporal 
Reliability for each MOBA game round in sub01, sub02, and sub11.
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scores from IGD-20, BIS-11, and DERS; (3) “participants.json” which details all columns in the “participants.
tsv” file; and (4) “README” providing general information about the dataset, including contact details. Each 
participant’s folder includes EEG data, electrode placements, channels, etc., for both resting and task states dur-
ing MOBA gameplay.

The EEG offline processing was performed using EEGLAB 2023 in MATLAB R2019a32. First, we 
imported the key event markers and their associated latencies obtained from video review into the EEG 
data files, resulting in an EEG file with markers. Second, we removed unused channels, such as ‘M1’, 
‘M2’, ‘HEOG’, ‘VEOG’, ‘CB1’, and ‘CB2’. Third, EEG signals were band-filtered between 0.5 Hz and 80 Hz, 
with a notch filter applied between 48 Hz and 52 Hz to mitigate power frequency interference. Fourth, all 
EEG signals were re-referenced to an infinity reference using the Reference Electrode Standardization 
Technique (REST)33. Fifth, we manually removed bad segments and interpolated any bad channels, fol-
lowed by downsampling to 256 Hz and running independent component analysis (ICA). Independent 
component classification was performed using ICLabel with a probability threshold of 0.7, followed by 
automated removal of artifact-designated components (ICs)34. Subsequently, EEG signals were segmented 
into epochs time-locked to key gameplay events (kills/deaths), spanning from −1,000 ms pre-event to 
+2,000 ms post-event. Epochs containing kill-death intervals shorter than 1,000 ms were systematically 
excluded to avoid temporal overlap contamination. The complete EEG preprocessing pipeline is illus-
trated in Fig. 5. All preprocessed EEG datasets were stored in the ‘\derivatives\preprocessed’ directory, 
with the corresponding preprocessing scripts (preprocessing_code.m) archived in the same location for 
public access.

Additionally, under the path ‘\derivatives\movies’, we provided video recordings of all participants play-
ing the game. Researchers can select time points or intervals of interest during MOBA gameplay based on the 
methods outlined in this paper for further EEG analysis. The path ‘\derivatives\markers’ contains the latency of 
key events in each participant’s task-state EEG data, and we have already marked these key events in the ‘sub-
**_task-MOBAgame_eeg.eeg’ file.

Fig. 7  Absolute temporal discrepancies across raters and experimental phases. (a) Absolute inter-rater temporal 
discrepancies across all subjects; (b) Absolute temporal discrepancies between the beginning and end of the 
experiment for all subjects; (c) Absolute inter-rater temporal discrepancies for each MOBA game round in 
sub01, sub02, and sub11; (d) Absolute temporal discrepancies between the beginning and end of each MOBA 
game round in sub01, sub02, and sub11.
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Technical Validation
Reliability analysis.  As previously described, two independent researchers (DDZ and HZL) manually anno-
tated key event latencies (i.e., in-game kills and deaths) by reviewing all participants’ gameplay videos. Following 
the methodology outlined in Fig. 3b, the timestamps of in-game kills and deaths were recorded with absolute 
consistency between raters. However, potential discrepancies could arise in determining the EEG start time (T0).

Fig. 8  Comparison of raw and preprocessed EEG segments. (a) A raw EEG segment from sub01; (b) The 
same EEG segment after preprocessing (0.5–80 Hz bandpass filtering, 48–52 Hz notch filtering, and REST re-
referencing); (c) The same EEG segment after independent component artifact removal.
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Four T0 values were obtained:
r1b: T0 calculated by Rater 1 at the beginning of the experiment.
r1e: T0 calculated by Rater 1 at the end of the experiment.
r2b: T0 calculated by Rater 2 at the beginning of the experiment.
r2e: T0 calculated by Rater 2 at the end of the experiment.
Inter-rater reliability was computed by first averaging each rater’s two measurements (r1b/r1e for Rater 

1; r2b/r2e for Rater 2) and then calculating the intraclass correlation coefficient (ICC) between raters. 
Similarly, temporal reliability was assessed by averaging the two raters’ measurements at the beginning 
(r1b/r2b) and end (r1e/r2e) of the experiment, followed by ICC computation between these two time 
points. Using bootstrapping (5,000 iterations), both inter-rater and temporal reliability yielded high ICC 
values of 1.00 (Fig. 6a,b), indicating good consistency in T0 determination across raters and experimental 
phases.

We further examined the absolute temporal discrepancies among the four T0 measurements (r1b, r1e, r2b, 
r2e). As illustrated in Fig. 7, three participants (sub01, sub02, sub11) exhibited larger deviations (>50 ms) 
between T0 values obtained at the beginning vs. end of the experiment, whereas all other participants showed 
highly consistent T0 values (absolute differences <35 ms) across both raters and experimental phases. For these 
three participants, we implemented an adaptive T0 recalibration strategy: T0 was recalculated before and after 
each MOBA game, and the final event timestamps were computed separately for each round of game. Both 
inter-rater reliability (ICC = 1.00) and temporal reliability (ICC = 1.00) were observed for these three partic-
ipants (Fig. 6c,d). Moreover, the absolute differences of T0 values across both raters and experimental phases 
were less than 35 ms for these three participants (Fig. 7c,d). This validates that our proposed temporal align-
ment framework achieves both high inter-rater reliability (minimizing observer bias) and robust temporal sta-
bility (resistant to signal drift in prolonged EEG recordings). All datasets and analysis routines for reliability 
assessment have been archived in the ‘\derivatives\Reliability_analysis’ directory to ensure full methodological 
transparency.

Fig. 9  P300 and time-frequency responses following in-game events. (a) ERP waveforms following an in-game 
kill event; (b) ERP waveforms following an in-game death event; (c) Time-frequency responses following an in-
game kill event; (d) Time-frequency responses following an in-game death event.
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EEG quality.  During EEG preprocessing, an average of 0.48 ± 0.90 channels were interpolated due to 
excessive noise. Additionally, 20.04 ± 5.03 independent components (ICs) were automatically removed using 
the ICLabel plugin, primarily reflecting artifacts from ocular (blinks, horizontal eye movements) and muscle 
activity. Given that participants continuously moved their fingers during gameplay and frequently exhib-
ited orofacial movements (e.g., swallowing, teeth clenching, frowning), myogenic artifacts were notably 
prevalent.

Figure 8a presents a representative raw EEG segment from sub01. Following preprocessing steps—including 
bandpass filtering (0.5–80 Hz), 50 Hz notch filtering, and REST re-referencing—significant noise reduction is 
observed (Fig. 8b). Further refinement through IC-based artifact removal demonstrates robust suppression of 
key artifact sources: ocular artifacts (blinks, saccades) and muscle-related artifacts (Fig. 8c). These results con-
firm that our preprocessing pipeline robustly mitigates major artifact sources while preserving neural signals of 
interest.

P300 component validation.  Based on the preprocessed EEG data, we applied a 30 Hz low-pass filter and 
segmented the signals into epochs spanning −200 ms to + 1000 ms relative to each key event onset, followed by 
baseline correction (−200 to 0 ms). The preprocessed EEG datasets for kills and deaths were stored in ‘\deriva-
tives\preprocessed\13’ and ‘\derivatives\preprocessed\14’, respectively.

We anticipated robust P300 component emergence within the 250–450 ms temporal window, and the results 
demonstrated obvious P300 peak activity within this timeframe following both kill and death events during 
gameplay (Fig. 9a,b). These findings indicate that our experimental methodology and data acquisition protocols 
successfully captured neural responses associated with in-game events, thereby establishing strong ecological 
validity. All ERP analysis scripts and processed datasets are organized under the directory path: ‘\derivatives\
ERP_analysis’.

SNR analysis.  We calculated the signal-to-noise ratio (SNR) for each channel by defining the pre-stimulus 
200 ms EEG interval as the noise baseline and the post-stimulus 200–1000 ms period as the signal window, using 
the following formula:

Fig. 10  SNR across all channels. (a) SNR during in-game kill epochs; (b) SNR during in-game death epochs.
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The analysis revealed superior SNR values in frontal-central electrodes (Fz, FCz, Cz), while other channels 
exhibited relatively lower SNR (Fig. 10). This SNR reduction in peripheral channels likely stems from pronounced 
myogenic artifacts generated during gameplay, including (1) sustained finger movements controlling the inter-
face, (2) ocular artifacts from intense visual fixation and saccades, and (3) orofacial muscle activity (swallowing, 
jaw clenching, and brow movements). All SNR computation scripts and derivative data have been archived in the 
‘\derivatives\SNR’ directory, ensuring full reproducibility of these electrophysiological quality metrics.

Time-frequency analysis.  We conducted time-frequency analysis using short-time Fourier transform 
(STFT) with a 400-ms Hanning window across the 1–45 Hz frequency range to examine neural oscillatory 
dynamics following in-game events, applying baseline correction based on the pre-stimulus interval (−800 to 
−200 ms). Our analysis revealed prominent delta-band event-related synchronization (ERS) and theta-band 
event-related desynchronization (ERD) following both kill and death events. Similarly, theta-ERS was observed 
over parieto-occipital regions after in-game kills, while beta-ERS emerged over centro-parietal regions following 
in-game deaths (Fig. 9c,d).

Correlation analyses.  Initial correlation analyses showed significant positive association between 
total IGD-20 score and post-death theta-ERD, with full results in Fig. 11 and analysis code at ‘\derivatives\
correlation_analysis’.

Usage Notes
This dataset has multiple potential applications in cognitive neuroscience and IGD-related research, including: 
(1) Investigating EEG characteristics during real MOBA gameplay (e.g., power spectral analysis, functional con-
nectivity, microstate analysis) compared to resting states; (2) Analyzing neural responses to critical events (kills 
and deaths) during gameplay at a millisecond time scale (e.g., event-related potentials, time-frequency analysis); 
(3) Allowing researchers to annotate their own time points or intervals of interest based on recorded gameplay 
videos to explore corresponding EEG characteristics; (4) Examining correlations between the aforementioned 
objective EEG features and the psychological characteristics of MOBA players.

Code availability
All analysis codes are publicly available through our OpenNeuro dataset31. These include: EEG preprocessing scripts 
(\derivatives\preprocessed\preprocessing_code.m), SNR calculations (\derivatives\SNR\SNR_code.m), ERP analysis 
(\derivatives\ERP_analysis\ERP_code.m), time-frequency analysis (\derivatives\TF_analysis\TF_analysis_code.m), 
correlation analyses (\derivatives\correlation_analysis\correlation_analysis_code.m), and reliability assessments  
(\derivatives\reliability_analysis\reliability_analysis_code.m), ensuring full reproducibility of all reported results.

Received: 7 October 2024; Accepted: 20 June 2025;
Published: xx xx xxxx

Fig. 11  Correlation analyses between P300 features, time-frequency responses, and IGD-20 total and subscale 
scores.
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