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A large-scale dataset for training 
deep learning segmentation and 
tracking of extreme weather
Sol Kim   1,4 ✉, Andre Graubner2,4 ✉, Lukas Kapp-Schwoerer2,4 ✉, Karthik Kashinath3 & 
Konrad Schindler   2

As Earth’s climate continues to undergo changes, it is imperative to gain understanding of how high-
impact, extreme weather events will change. Researchers are increasingly relying on data-driven, 
learning-based approaches for the detection and tracking of extreme weather events. While several 
attempts to generate datasets of hand-labeled weather or climate have been made, a significant 
challenge has been to gather a sufficient number of expert-annotated samples. To address this 
challenge, we introduce the largest dataset of expert-guided, hand-labeled segmentation masks of 
extreme weather events. It contains global annotations for atmospheric rivers, tropical cyclones, and 
atmospheric blocking events from the European Centre for Medium-Range Weather Forecasting’s 
reanalysis version 5. Every timestep for each event is annotated by two separate annotators to bring 
the total number of labeled timesteps to 49,184. Professional annotators were trained and guided to 
identify these features by domain-experts, and event-specific experts were consulted for each of the 
annotation guides. The resulting annotations are demonstrated to have characteristics similar to other 
methods and those generated directly by domain experts.

Background & Summary
It is unequivocal that, due to human activities, the Earth’s climate is changing and will continue to undergo 
extensive changes for the foreseeable future1. An important aspect of this process are changes in the occurrence 
of weather extremes such as heatwaves, coldsnaps, heavy precipitation, and tropical cyclones2. Thus, it is imper-
ative to gain better understanding of how high-impact, extreme weather events will shift. The detection and 
tracking of these events is at present still largely reliant on human-engineered heuristics that are known to be 
fraught with various inconsistencies and deficiencies3–7. For example, many detection algorithms exist for each 
event type and different heuristic rules have led to large discrepancies in even the most basic statistics regarding 
extreme weather events, i.e., their frequency counts or distributions5–8. A necessary requirement to accurately 
characterize extreme weather events in large datasets is to be able to detect and track them in a reliable and 
repeatable manner.

To address this challenge, we have created ClimateNetLarge - a dataset of dense annotations of extreme 
weather events, which can either be analyzed on its own or serve as a basis for data-driven approaches, includ-
ing in particular deep learning (DL). Data-driven approaches can learn to recognize target patterns based on a 
diverse set of annotations, thus removing the need for custom, threshold-based heuristics. Similar efforts have 
previously been made to collect hand-annotated labels from weather and climate experts who can use domain 
expertise to ensure quality and resolve edge cases and errors that algorithms may miss. However, doing so 
requires coordinated labeling campaigns9, which are costly, time-consuming and logistically challenging.

Our target was to collect a large-scale dataset of hand-labeled segmentation masks for atmospheric rivers 
(ARs), tropical cyclones (TCs), and blocking events. These events are associated with extremes in precipitation, 
wind, temperature, and drought - aspects that are critical to consider under a changing climate10. To that end, 
we turn to professional crowd-labeling, guided by expert instructions and training. In total, we have generated 
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49,184 hand-labeled timesteps, an order of magnitude more than previous annotated datasets of extreme 
weather events9.

The selected weather events share two qualities: they are responsible for catastrophic socioeconomic 
impacts11–14 and they are notorious for their complex characteristics; many different detection algorithms have 
been produced for these events which rely on different thresholds, variables, and/or geometries5,6,8, making them 
difficult to map reliably at the global scale with heuristic detection rules. ARs are a global phenomena transport-
ing moisture and energy through mid-latitude regions and reaching into polar latitudes. These features are asso-
ciated with numerous hazards such as floods, high winds, and debris flows among other less commonly studied 
impacts15. In the western U.S., where most of the AR literature has historically focused on, ARs are responsible 
for about one billion dollars of flood-related damage per year13. In other regions, such as western Europe, west-
ern South America, and Australia/New Zealand, AR events have also been linked to flooding and their absence 
has been linked to droughts15,16. One study found that approximately 300 million people across the global are 
exposed to flood risk due to the occurrence of ARs with the most significant regions found in California, the 
Mississippi basin, in the Parana River basin, in the Iberian Peninsula, southern Iran, the Amur and Yangtze 
Rivers, and the Murray-Darling basins; this highlights the large regional scope of AR impacts16. In a review 
presented by the World Meteorological Organization (WMO) Tropical Cyclone Programme, TCs have been 
responsible, on average, for 43 deaths and 78 million dollars of losses everyday for the past 50 years meaning TCs 
are responsible for one third of both deaths and economic losses from weather-,climate and water-related disas-
ters globally17. Blocking events are associated with devastating heat waves, coldsnaps, and extreme precipitation 
events12. For example, blocking has been associated with the European heatwave in 2003 which claimed 30,000 
lives due to unrelenting heat18 and extreme precipitation events over the continents of Asia, North America, and 
Europe19.

Methods
The following section provides an overview of the data and methods used to generate our dataset of segmenta-
tion masks for ARs, TCs, and blocking events as seen in Fig. 1. We describe the reanalysis data set used, prepa-
ration of the data for use within the labeling tool, the labeling process, and finally, the packaging of the final 
dataset.

Reanalysis Data.  Our dataset is derived from the global European Centre for Medium-Range Weather 
Forecasts Reanalysis version 5 (ERA5)20, which is publicly available through the Copernicus Climate Data Store 
website. Several variables were selected at hourly timesteps (for ARs and TCs) or daily timesteps (for blocking 
events). For ARs and TCs, professional hand-labelers were provided with global images of total column water 
vapor (TCWV), vertically integrated water vapor transport (IVT), and mean sea level pressure (MSLP). For 
blocking events, we provided global images of the 500 hPa geopotential height anomaly. These variables are rele-
vant to typical definitions of the respective features. For ARs and TCs, we have selected 9,850 timesteps between 
1980-2022, sampled uniformly (each timestep has an equal chance of being chosen) at random without replace-
ment (a timestep may not be chosen twice), in order to cover a variety of climate conditions, seasons, and times 
of day. For blocking events, we use daily, consecutive timesteps that span the period from 2000 to 2013. Due to 
the predominantly temporal nature of blocking events, we chose not to randomly sample timesteps but to rather 
provide a continuous record, as the event duration is important for most studies. We have abstained from utilizing 
ERA5 data prior to 1980 to avoid biases inherited from pre-satellite observation technology.

Labeling Tool and Crowd-sourcing Annotators.  Running consistent labeling campaigns for segmen-
tation at scale is challenging. This issue is exacerbated by the specialized domain knowledge needed for atmos-
pheric data: average crowd-labelers are not familiar with weather extremes like atmospheric rivers or blocking 
events, and common annotation tools do not support the kind of multi-channel data needed to annotate them. 

Fig. 1  Schematic of the labeling workflow. After pre-processing the ERA5 reanalysis data, multiple crowd-
labelers annotate each timestep according to expert-curated labeling guides. Shown here is the total column 
water vapor variable and only the corresponding atmospheric river annotations although more variables were 
available to annotators and all event types had two annotators label each timestep.
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We overcome these difficulties by employing webKnossos21, a company originally focused on crowd-sourcing the 
creation of datasets for bio-medical image segmentation. Their suite of online tools is by design able to display the 
kind of complex, multi-channel data that annotators need to inspect for our task, and also provides a fine-grained 
system to track progress, update annotator instructions based on expert feedback, and identify potential qual-
ity issues. webKnossos provides a python package to process data arrays in python and both prepare them in a 
format that works with the tool and directly uploads them for use on the online webKnossos interface (https://
docs.webknossos.org/webknossos-py/)21. This package was used to process the appropriate ERA5 variables for 
each event type; more details are in the Data Packaging section. Through the webKnossos interface, each variable 
is stored as a separate channel with functionality able to show a single channel or combinations of channels at 
the same time; thus, each timestep contains multiple channels, or variables, for the annotators to inspect. Each 
variable is also scalable to appropriate units for annotation purposes. For example, IVT can be scaled to highlight 
minimum values of around 100 kg/m/s and maximum values of around 750 kg/m/s to allow annotators to easily 
locate regions of high IVT; a feature relevant especially relevant for AR identification. Fig. 2 shows an example of 
polygons drawn through the webKnossos interface to denote ARs, overlaid on a corresponding image of TCWV. 
webKnossos employs professional annotators and are thus able to generate large volumes of labels that would be 
difficult to source from climate and weather experts alone, given the sheer amount of man-hours required and the 
one-off effort each new annotator must spend to familiarize themselves with the labeling tool. Depending on the 
individual annotator and how comfortable they were for a given type of event, labeling a single timestep for one 
event type took anywhere from less than a minute to over ten minutes.

Labeling Guides.  To instruct the crowd-labelers we created labeling guides, based on input and feedback 
from event-specific climate experts. These guides provide (i) background information on the nature of the specific 
extreme weather event, (ii) concrete instructions for annotation workflows that specifically utilize the webKnos-
sos tooling, and (iii) positive, negative, and edge-case examples. To further improve the dataset, we updated the 
guides iteratively in response to quality control of the incoming labels and to questions from the annotators that 
arose during the annotation process. This close dialogue with the crowd-labelers was crucial to ensure labelers 
had acquired the necessary understanding of each event type. While it was important to ensure that the annota-
tors had a strong understanding of how to identify and delineate these extreme weather event types, we took care 
not to provide overbearing instructions so as to preserve diversity within the reasonable definition uncertainty 
and avoid steering all annotators toward a specific labeling bias. For example, Fig. 3 and 7 show how two different 
annotators labeled ARs and TCs in the same timestep. In this particular case, the annotators exhibit agreement 
over the locations of major ARs (with one exception off the southern coast of Australia), but to some level disa-
greed about the boundaries of these features; annotator a tended towards tighter and narrower masks, including 
nearby but separate ARs; whereas annotator b drew larger, more relaxed boundaries and merged nearby ARs into 
one mask.

In Fig. 2, polygons with varying color and/or texture denote different ARs. Each event is associated with a 
unique event ID, hence the separate color and/or texture per event. For readability we display only TCWV in the 
background, but note that during annotation, crowd-labelers viewed multiple data channels (depending on the 
event type). For details about the data available and our recommendations on utilizing each data field, we refer 
readers to the annotation guides. We briefly summarize some of the guidance provided for each of the event 
types. For ARs, annotators were to (i) primarily rely on zones of enhanced TCWV and IVT, (ii) look for long, 
narrow columns (at least a 2:1 ratio of length versus width) from the tropics/subtropics oriented towards the 
poles, (iii) avoid areas along the equator and cyclonic features, and (iv) label roughly 6-12 AR events globally for 
each timestep and no timesteps should be without any ARs8,15. For TCs, annotators were to (i) use MSL to iden-
tify low pressure anomaly zones, (ii) rely on TCWV and IVT to find concentrated, spiraling features associated 
with those low pressure zones, and (iii) generally focus on the tropics/subtropics for labeling9,22,23. For blocking 
events, annotators were to (i) use the 500 hPa geopotential height anomaly field focusing strictly on positive 
anomalies, (ii) look for nearly stationary, positive anomalies at roughly country size scales, and (iii) and focus on 
latitudes between 25-75° N and S respectively6. The labeling guides can be viewed at the following web links: AR 
Guide, TC Guide, Blocking Guide.

Fig. 2  The webKnossos interface used for labeling displaying the total column water vapor field in green. The 
colored and patterned polygons show examples of one annotator’s atmospheric river labels.
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Data Packaging.  ERA5 reanalysis data are available on a regular latitude-longitude grid at 0.25° × 0.25° 
resolution. To process the atmospheric features for the webKnossos annotators, we load the NetCDF24 ERA5 data 
into python arrays and project the data onto a flat plane using a plate carrée equirectangular projection (relying on 
the NetCDF regular latitude-longitude grid) through the webKnossos python package (https://docs.webknossos.
org/webknossos-py/)21. This package saves the resulting data array and image to the webKnossos online system. 
The processing script is made available (see section Code Availability).

After the annotation process, we package the labels into easily accessible files in NetCDF format24. Each event 
type is packaged separately in single timesteps for ARs and TCs, and series of 10 consecutive days for blocking 
events (see Fig. 12). More details on the specific structure of files are provided in the Data Records section.

Data Overview.  In this section, we provide an overview of the hand-labeled extreme weather events and 
compare them with observations or other published methods for detecting the respective features. We begin by 
comparing our AR labels to those detected by a widely used, continuously developed algorithm termed Tracking 
Atmospheric Rivers Globally as Elongated Targets (tARget)25–27. The most recent update to the tARget algorithm 
was evaluated on ERA5 for the period 1940-2023, which matches the dataset underlying our labeling campaign, 
but covers a longer time period27. The latest updates to the tARget algorithm refined the detection of ARs in polar 

Fig. 3  (a) and (b) show two different annotators’ labels of atmospheric rivers for the same timestep. Annotator 
(a) tends to draw smaller boundaries and distinguishes more atmospheric rivers whereas annotator (b) 
tends to draw larger boundaries and distinguishes less features. To note, both annotators agree on all areas of 
atmospheric rivers aside from annotator (b) finding one extra atmospheric river south of Australia.

Fig. 4  Annual global atmospheric river frequencies based on all annotated timesteps and all annotators.
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regions, tropical regions, and zonal ARs. Fig. 4 displays the global frequency (%) of our AR hand-labels, which 
can be compared with the results from the most recent study by Guan and Waliser, shown in Fig. 627. Atmospheric 
river distributions are in good agreement in terms of the well-known zones of high activity, e.g. the Pacific and 
Atlantic subtropics and mid-latitudes, but there are differences in magnitude. The hand-labeled AR dataset shows 
higher magnitudes compared to the tARget algorithm; over the north/south Atlantic, north Pacific, and southern 
Indian oceans, maximum frequencies approach or reach 30% for the hand-labeled dataset as compared to 10-12% 
with the tARget algorithm. We note that a similar magnitude difference was observed for domain-experts when 
asked to hand-label ARs, i.e. it is not a specific issue of crowd-sourced labels, but rather expresses the expected 
discrepancies between human annotators (expert or not) and other detection algorithms, likely due to inher-
ent definition uncertainty9. Also, the Atmospheric River Tracking Method Intercomparison Project (ARTMIP), 
which compared a variety of hand-engineered and learning-based detection algorithms, exhibited similar varia-
bility8,9,28. In the polar regions, particularly over the Arctic, and over some land areas, such as the Middle East and 
India, the hand-labeled AR dataset shows lower frequencies when compared to the tARget algorithm. To note, the 
tARget algorithm’s most recent refinements generated higher frequencies of polar ARs. Even prior to the refine-
ment, the tARget algorithm was unique in its ability to detect ARs over polar regions and over land compared 
to other algorithms as it uses a location and month specific relative threshold for IVT27,28. Seasonal frequencies 
of AR hand-labels (June, July, and August (JJA); December, January, and February(DJF)) are shown in Fig. 5. A 
study on the JJA and DJF seasonal AR frequencies in ERA5 has shown higher frequencies of ARs during JJA over 
the subtropical south Pacific, western north Pacific, and north Indian oceans as compared to DJF frequencies29. 
Our hand-labels well-represent these seasonal differences apart from the lack of AR frequencies over the north 
Indian Ocean during JJA.

For TCs, we compare our results with two other studies: Sobel et al.30, and Knapp et al.’s International Best 
Track Archive for Climate Stewardship (IBTrACS) data set31. Using ERA5 data from 1980-2016, Sobel et al. 
designed a tropical cyclone genesis index that combines four predictors related to tropical cyclones: potential 
intensity, vertical wind shear, absolute vorticity at 850 hPa, and column integrated relative humidity30,32. The 
index quantifies the probability that a tropical cyclone will form over a given region. Fig. 8 shows the global fre-
quency (%) of tropical cyclones from our human-labels and Fig. 10 shows the tropical cyclone genesis index. The 
known areas of high TC activity are consistent across the two maps, including the western and eastern Pacific 
just north of the equator, the Indian Ocean and western Pacific just south of the equator, and lastly, weaker 
activity in the western Atlantic north of the equator. Next, we compare our hand-label frequencies of TCs with 

Fig. 6  Annual global atmospheric river frequencies detected by the most updated version of tARget 
(figure directly from Guan and Waliser27, Fig. 6d, Open Access, Creative Commons Attribution version 4.0 
International License).

Fig. 5  Seasonal global atmospheric river frequencies based on all annotated timesteps for (a) June, July, August 
and (b) December, January, February.
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Fig. 8  Annual global tropical cyclone frequencies based on all annotated timesteps and all annotators.

Fig. 7  (a) and (b) show two different annotators’ labels of tropical cyclones for the same timestep. Both 
annotators find a cyclone off the eastern shore of Madagascar while annotator (b) includes another cyclone 
northwest of Australia.

Fig. 9  Seasonal global tropical cyclone frequencies based on all annotated timesteps for (a) June, July, August 
and (b) December, January, February.

https://doi.org/10.1038/s41597-025-05480-0
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IBTrACS31 which is a comprehensive collection of global tropical cyclone best-track data. Knapp et al. gener-
ated frequencies of storms per decade from 1945-2007 (Fig. 3 of Knapp et al.31; not shown in this study). Again, 
zones of high activity are in strong agreement with our hand-labels although the IBTraCS magnitudes peak at 
around 1% which is lower than our magnitudes. The Knapp et al. frequencies were generated by taking tropical 
cyclone tracks and expanding them by 1° which corresponds to a distance, or radius, of a half-degree (55 km) 
around each track point. However, previous studies have found the radius of observed tropical cyclones to be 
far greater than a half-degree with sizes ranging from 2.7° to well above 10° for the largest cyclones33,34. As this 
dataset segments the entire tropical cyclone shape, our frequencies would be expected to have higher frequencies 
than those reported in IBTrACS. To demonstrate, Cheng et al. show how TC frequencies change when the size 
of the TC is assumed to be a 1° area grid box around a track compared to 8°; TC annual frequencies maximize at 
around 1% (in line with IBTrACS) compared to around 15% for those respective grid box sizes (Fig. 11); our TC 
frequencies fall within those ranges. Examining the seasonal frequencies of our TC hand-labels (Fig. 9) shows 
higher TC activity in the north Pacific and Atlantic during JJA and higher TC activity over the southern Indian 
Ocean and south Pacific. These results are in agreement with observed seasonal TC frequencies30.

Lastly, we compare the atmospheric blocking results to a study by Pinheiro et al. where they utilized the 
European Centre for Medium-Range Weather Forecasts’ reanalysis product, known as ERA-Interim, for the 
years 1979-20186. Among the different versions of their algorithm, we compare to the one that focuses on the 
500 hPa geopotential height anomaly, the same field shown to the crowd-labelers in our study. As criteria for 
blocking, that version requires that a grid point must exceed 100 m (for the geopotential height anomaly at 500 
hPa) for 10 consecutive days. There is no universally accepted definition for blocking events and other height 
anomalies and durations have also been used. The global frequency of atmospheric blocking events for our 
study is shown in Fig. 13 (annual) and Fig. 14 (seasonal). The results from Pinheiro et al. are depicted in Fig. 15. 
Overall, both the magnitude and distribution of atmospheric blocking events show good agreement for both 
seasons, with blocking occurring predominantly in the north and south Pacific Ocean, south Indian Ocean, 
and north and south Atlantic. Over land, significant areas of blocking occur over northeastern areas of North 
America and northwestern and eastern areas of Europe. The DJF months show stronger blocking in the north 
Pacific and southern storm tracks compared to JJA for both studies. Maximum frequencies are around 15% 
(especially during DJF), with a prominent band of 5–10% around 50° north and south of the equator.

Overall summary statistics suggest that crowd-labelers were able to map ARs, TCs, and atmospheric block-
ing events well enough to reproduce the frequencies and distributions found in existing studies. There are some 
differences in frequency magnitude, for which we have provided plausible explanations. While the dataset pro-
duced provides labels of extreme events ready for the training of deep learning models, there are some present 
limitations; the labels purely denote areas that labelers defined for extreme events without (i) further details 
such as the centroid location, direction, and tags for landfalling and (ii) underlying climate/weather charac-
teristics such as precipitation, wind speed, temperature, and humidity associated with each label. These details 
and characteristics can be determined with post-processing of labels and integration of reanalysis data for the 
corresponding time steps.

Data Records
Our efforts to make the new data set accessible include source code for efficient handling of the data. We provide 
NetCDF files for structured file access24. The labels for ARs, TCs, and blocking events are packaged with the fol-
lowing variables: time, label, class, annotator, longitude, and latitude. The “label" variable is 3-dimensional and 
contains annotator, latitude and longitude dimensions (blocking events are 4-dimensional with the addition of a 
time dimension). The “class" dimension denotes the event type. The “annotator" dimension denotes two separate 
annotators. Latitude and longitude are arrays of 721 and 1440 length respectively for quarter-degree intervals. 

Fig. 10  Global tropical cyclone genesis index based on four environmental fields from ERA5 (figure directly 
from Sobel et al.30, Fig. 3b, Open Access, Creative Commons Attribution version 4.0 International License).

https://doi.org/10.1038/s41597-025-05480-0
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ARs and TCs are packaged in single timesteps. The labels for atmospheric blocking are packaged in sequences 
of 10 consecutive days. Each file name denotes the timestep (for blocking the first timestep). Labeled and back-
ground grid cells are denoted as 1 and 0 respectively. The labels for ARs, TCs, and blocking events are separated 
by directory, in the manner described above, and are available at Harvard Dataverse35. The data suffixed by “raw" 
are the raw dataset before the area threshold filters were applied and the data suffixed by “cleaned" are the dataset 
after filters were applied.

Technical Validation
For all three event types, validation testing was done to minimize the risk of annotation errors in the final dataset 
although we cannot completely rule out human mislabels and errors. ARs were tested to identify and remove 
blank timesteps (ARs should exist in every timestep15) and duplicate timesteps. TCs were tested to identify and 
remove duplicates for all timesteps in which a TC exists. Blocking events were tested to identify and remove 

Fig. 12  (a–j) shows the evolution of a blocking event over 10 consecutive days off the southern coast of South 
America.

Fig. 11  Global tropical cyclone frequencies based on observations assuming a 1° grid box around the track 
center (a) and a 8° grid box around the track center (b) (figure directly from Cheng et al.43, Fig. 7, Open Access, 
Creative Commons Attribution version 3.0 License).

https://doi.org/10.1038/s41597-025-05480-0
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duplicates if an entire file (10 consecutive days) had matching duplicates with another file. Additionally, we 
set size thresholds for each event type to remove errant markings and unrealistically small events made by the 
human labelers. ARs under 250,000 sq km, TCs under 100,000 sq km, and blocking events under 2,000,000 
sq km were removed. Fig. 16 shows probability distributions for all three events. The minimum length of ARs 
with available detection algorithms are typically 2000 km with widths at least half as small8. Median length and 
width of a commonly used algorithm are 3665 km and 564 km respectively25 and our area distributions match 
well with another AR area evaluation36. TCs typically have a minimum outer radius of around 200 km which 
corresponds to an area of around 125,663 sq km assuming a circular shape37 and size classifications for tropical 
cyclones are defined as “very small” if their radius of outermost closed isobar (ROCI) is less than 2°. Blocking 
events defined by other detection algorithms set minimum sizes to 2,000,000 km sq38,39. Areas of each event 

Fig. 13  Annual global atmospheric blocking frequencies based on all annotated timesteps and all annotators.

Fig. 14  Seasonal global atmospheric blocking frequencies based on all annotated timesteps and all annotators 
for (a) June, July, August and (b) December, January, February.

Fig. 15  Seasonal global atmospheric blocking frequencies based on the geopotential height anomaly detection 
algorithm by Pinheiro et al. Left - June, July, August; right - December, January, February. (figure directly 
from Pinheiro et al.6, Fig. 6 center row, Open Access, Creative Commons Attribution version 4.0 International 
License).
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were calculated using SciPy’s label function with connected areas defined with 8-connections (i.e. connection 
is considered if any of the 8 surrounding pixels is also annotated)40. We also handled cases where labels were 
considered connected at the edges of the data longitudinally (e.g. an AR beginning around 350° E and ending 
around 10° E). The mean Intersection-over-Union metric was calculated to compare our crowd-labelers against 
each other for ARs, TCs, and blocking events. We find values of 0.42, 0.22, and 0.35 respectively; these numbers 
are comparable to mean Intersection-over-Union values for domain-expert against domain-expert labels for 
ARs and TCs (0.34 for ARs and 0.26 for TCs)9.

Usage Notes
For many analysis tasks it may be helpful to combine all timesteps for a given event type, for instance when look-
ing for seasonal statistics and patterns. To combine multiple (or all) timesteps together or performing seasonal 
analysis, we recommend the use of NetCDF tools41 or Climate Data Operators42.

Code availability
The code used to process ERA5 data from NetCDF format into an appropriate format for webKnossos along 
with uploading to the web interface is available. Although our dataset is provided in already packaged form, 
pre-processing code to download webKnossos annotations and package them into the NetCDF format is 
also available. These are both available on GitHub at the following URL: https://github.com/andregraubner/
ClimateNetLarge.
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