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A Machine Learning-Reconstructed 
Dataset of River Discharge, 
Temperature, and Heat Flux into 
the Arctic Ocean
Zihan Wang   1,2, Fengming Hui1,2 ✉ & Xiao Cheng1,2

Arctic rivers deliver 11% of the global river discharge volume into the Arctic Ocean, influencing 
ocean circulation, sea ice, and coastal ecosystems. Our understanding of these patterns is limited by 
substantial data gaps. To address this, we present the Reconstructed Arctic-draining river DIscharge and 
Temperature (RADIT) dataset, a comprehensive record of reconstructed daily discharge, temperature, 
and heat flux for 25 major Arctic rivers from 1950 to 2023. Based on machine learning regression 
methods and ERA5-Land reanalysis data, we designed distinct reconstruction frameworks for discharge 
and temperature, considering the different characteristics of the observational data. We achieved high 
reconstruction accuracy, with median Nash–Sutcliffe efficiency (NSE) values of 0.861 for discharge and 
0.906 for temperature. The RADIT dataset, with extensive spatial and temporal coverage, is a valuable 
resource for understanding Arctic hydrology and its response to climate change. It will improve Arctic 
freshwater budget quantification, climate model calibrations, and assessments of river impacts on the 
Arctic Ocean, enhancing our understanding of the role of the Arctic Ocean in the global climate system.

Background & Summary
The Arctic Ocean, as Earth’s smallest and shallowest ocean basin, constitutes a unique component of the global 
ocean system1. It is characterized by distinctive physical features, including perennial sea ice cover, strong sea-
sonal variations, and complex interactions among the atmosphere, cryosphere, and ocean circulation patterns2,3. 
One of the key features of the Arctic Ocean is its disproportionately high influence from riverine inputs. Despite 
comprising only 1% of the global ocean volume, it receives 11% of the global river discharge4.

This substantial freshwater influx fundamentally shapes the Arctic environment via multiple mechanisms. 
River discharge directly influences ocean salinity and stratification, sea ice formation processes, and thermo-
haline circulation patterns5,6. Moreover, rivers transport considerable amounts of heat, nutrients (e.g., nitrogen 
and phosphorus), dissolved organic matter, and particulate organic carbon to the Arctic Ocean, thus profoundly 
affecting coastal and marine ecosystems7–10.

Among these riverine influences, discharge, water temperature, and heat flux are three key parameters for 
characterizing river‒ocean interactions. These hydrological variables influence various physical and ecological 
processes, such as river ice dynamics11,12, coastal erosion13, and aquatic ecosystems14, highlighting the intercon-
nected nature of these systems. Recent studies have revealed significant changes in these variables, with both 
discharge volumes and water temperatures exhibiting notable trends across many Arctic regions15–19. Therefore, 
understanding the temporal and spatial patterns of such changes is crucial for assessing the response of the 
Arctic system to climate change and its implications for both regional processes and global climate dynamics.

Although the importance of these parameters in shaping Arctic physical and ecological processes has been 
recognized, our ability to fully understand and predict changes in these critical variables faces several funda-
mental challenges. The most pressing issue is the lack of a unified monitoring network that provides long-term, 
comprehensive coverage across the pan-Arctic region. Historically, observations have been collected by different 
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national agencies via various protocols and measurement frequencies, leading to data quality and temporal 
resolution inconsistencies. This situation has been aggravated by the continuous decline in monitoring stations 
since the mid-1980s20,21. Moreover, the spatial coverage of observations is highly uneven, with significant data 
gaps for both North American and Eurasian Arctic rivers22,23.

These data limitations have substantially limited the scope and reliability of relevant research. While recent 
efforts, including those using reanalysis-based datasets16,24, have significantly improved the spatial coverage of 
Arctic river discharge estimates, many observation-based studies still concentrate on a few major rivers with 
relatively complete records, such as the Yenisey, Lena, and Mackenzie Rivers18,25,26. For other Arctic-draining 
rivers with significant data gaps, previous studies have often relied on simplified interpolation techniques27 or 
have been restricted to periods with adequate observations17. This selective coverage and simplified treatment 
of missing data create potential biases in our understanding of pan-Arctic river systems, as rivers with short or 
discontinuous observational records are often overlooked despite their potential importance to regional hydrol-
ogy28. Given these observational limitations, researchers increasingly employ hydrological models as comple-
mentary tools to simulate discharge patterns and thermodynamics across various spatial and temporal scales24,29. 
However, these models often exhibit substantial uncertainties24,30 due to the complexity of Arctic hydrological 
processes, such as snowmelt31 and permafrost–hydrology interactions32,33. These limitations collectively restrict 
our ability to comprehensively assess the freshwater and heat budgets of the Arctic Ocean, highlighting the 
urgent need for more comprehensive and reliable datasets across the entire Arctic-draining river system.

The aim of this study was to develop a comprehensive dataset covering 25 major rivers flowing into the 
pan-Arctic Ocean to resolve existing data limitations. To achieve this goal, we created the Reconstructed 
Arctic-draining river DIscharge and Temperature (RADIT) dataset, which provides continuous daily records of 
river discharge, temperature, and heat flux spanning from 1950 to 2023. This dataset encompasses rivers in var-
ious geographical regions, including Eurasia (e.g., Ob, Yenisei, and Lena) and North America (e.g., Mackenzie 
and Yukon), collectively accounting for the majority of the freshwater input to the Arctic Ocean.

The reconstruction of this dataset presented several methodological challenges. First, the highly irregular and 
heterogeneous temporal distribution of missing values in historical records substantially limits the applicability 
of traditional time series approaches. Second, substantial differences in hydrological and climatic conditions 
across Arctic river basins complicate the task of accurately reconstructing discharge from limited and uneven 
observational records. To address these challenges, we designed a reconstruction framework that integrates 
machine learning techniques with data-driven design choices specific to the characteristics of discharge and 
temperature data. For river discharge reconstruction, we implemented individual models for each river so that 
the reconstruction can be adapted to river-specific data patterns and variability. In the river temperature recon-
struction process, we employed a unified model approach to capture spatial variations in temperature dynam-
ics across the pan-Arctic region, even for rivers lacking historical measurements. This integrated framework 
allowed for consistent, high-quality reconstruction results, while adapting to the differing data conditions and 
hydrological behaviors across river systems. Evaluations against in situ observations showed that the RADIT 
dataset achieved high reconstruction performance, with Nash–Sutcliffe efficiency (NSE) values exceeding 0.8 for 
most rivers in both discharge and temperature reconstructions, supporting its applicability for various research 
purposes.

The RADIT dataset provides an important contribution to Arctic hydrological data availability, offering a 
comprehensive machine-learning-based reconstruction of continuous daily river discharge and temperature 
records across 25 major Arctic-draining rivers. Our approach successfully fills a gap in Arctic research infra-
structure and facilitates more comprehensive investigations of land-to-ocean freshwater and heat fluxes in a 
changing Arctic environment. The daily temporal resolution of this dataset enables the investigation of hydro-
logical processes at finer temporal scales, providing new opportunities to analyze rapid changes in Arctic river 
systems. The extensive temporal coverage of this dataset, spanning over seven decades, makes it a useful resource 
for understanding long-term Arctic system changes, improving climate models, and advancing our knowledge 
of land‒ocean interactions in the Arctic region. These high-quality data can support various research applica-
tions, including hydrological model validation and calibration, assessments of the impacts of climate change, 
ocean circulation modeling, and ecosystem studies in the rapidly changing Arctic environment.

Methods
In situ river discharge measurements.  In this study, we utilized daily river discharge observations 
from multiple hydrological databases, which were integrated into a comprehensive dataset as the foundation for 
machine learning-based discharge reconstructions.

	(1)	 ArcticGRO: The Arctic Great Rivers Observatory (ArcticGRO) project, of which its predecessor was initiat-
ed in the mid-1990s, was established to integrate hydrological and biogeochemical data from Arctic rivers 
(https://arcticgreatrivers.org/data/). In 2008, it was rebranded to its current name, establishing itself as a 
key component of the National Science Foundation (NSF)’s Arctic Observing Network34. This project aims 
to collect river hydrological observation data from hydrometeorological agencies across several countries, 
including Russia’s Roshydromet, the United States Geological Survey (USGS), and the Water Survey of 
Canada (WSC). Initially, the ArcticGRO project focused on six major Arctic rivers: the Ob, Yenisey, Lena, 
and Kolyma Rivers in Russia, along with the Yukon and Mackenzie rivers in North America. The project 
expanded in 2019 to include medium-sized Russian rivers, such as the Northern Dvina, Mezen, and Pecho-
ra rivers35. To date, ArcticGRO provides daily discharge observations for 15 rivers flowing into the Arctic 
Ocean, with data extending back to the 1930s that are updated regularly.

	(2)	 GRDC: The Global Runoff Data Centre (GRDC) operates as an international database under the guidance 
of the World Meteorological Organization (WMO) (https://portal.grdc.bafg.de/). Established in 1988, 
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the GRDC is managed by the Federal Institute of Hydrology of Germany, located in Koblenz. Compared 
with the ArcticGRO project, the GRDC maintains a considerably more extensive network of worldwide 
hydrological stations, with over 9500 stations and records dating back to the early 19th century. This 
broad spatiotemporal coverage and the availability of long-term records make it one of the world’s largest 
quality-controlled river discharge observation datasets. Additionally, GRDC products include vector data 
delineating watershed boundaries for each hydrological station, which facilitates basin-scale analyses.

	(3)	 WSC: The Hydrometric Data (HYDAT) database of the Water Survey of Canada (WSC) serves as a vital 
repository for hydrological monitoring across Canada (https://wateroffice.ec.gc.ca/). It contains extensive 
river discharge records from a network of gauging stations distributed throughout the country, including 
major river systems such as the Mackenzie River. The observed data are subjected to rigorous quality con-
trol and are regularly updated.

	(4)	 ArcticRIMS: The ArcticRIMS dataset is another comprehensive discharge database covering the pan-Arctic 
region (https://rims.unh.edu/). In this study, we utilized ArcticRIMS data, primarily for Russian rivers and 
the Yukon River in Alaska, although most records for these rivers terminate between the late 1990s and 
early 2000s.

	(5)	 R-ArcticNet: The R-ArcticNet dataset, developed by the Water Systems Analysis Group at the University of 
New Hampshire (UNH), is a comprehensive discharge database focused on Arctic rivers (https://www.r- 
arcticnet.sr.unh.edu/v4.0/). In this study, we used V4.0 of the dataset, which includes a sub-dataset provid-
ing daily discharge records for 139 rivers in Russia. Similar to ArcticRIMS, most observations in R-ArcticNet  
terminated in the early 2000s.

After collecting the above observed data products, we first conducted a preliminary quality assessment and 
then merged the different datasets on the basis of their monitoring sites. In this process, a common challenge 
was the inconsistent naming conventions and geographic coordinates for identical rivers or sites across the 
different datasets. To address this issue, we systematically verified the data consistency between proximate sites 
on matching dates and unified the names of rivers or sites confirmed as identical. On this basis, when incon-
sistencies occurred in measurements from the same site and for the same date across multiple datasets, the final 
observation value was determined by calculating the mean or mode. Following these steps, we established an 
initial daily discharge observation dataset for rivers flowing into the pan-Arctic Ocean. For the purpose of this 
study, the following criteria were adopted to select the rivers included:

	(1)	 The selected river should have no more than 60% missing daily discharge data from the most downstream 
gauging station between 1950 and 2023;

	(2)	 The river mouth should be situated above 60°N;
	(3)	 The average observed discharge should be no less than 100 m³/s (for reference, this threshold is two orders 

of magnitude smaller than the mean discharge of three major Russian Arctic rivers — the Ob, Yenisei, and 
Lena Rivers — each exhibit an average discharge greater than 10,000 m³/s).

Following these selection criteria, a total of 25 rivers were selected for the following reconstruction study. 
Their spatial distributions and basic characteristics are shown in Fig. 1a and Supplementary Table 1, while 
Fig. 1b illustrates the temporal coverage of daily observations for each river. These rivers represent the majority 
of medium-sized and large rivers draining into the pan-Arctic Ocean, thus ensuring comprehensive spatial 
coverage of the region. The discharge, temperature, and heat flux of these 25 rivers were subsequently recon-
structed. Across the selected monitoring stations, 29.2% of the daily discharge observations were missing for the  
1950–2023 period. Notably, even major river systems such as the Kolyma and Yukon Rivers presented substan-
tial data gaps, with missing data ratios of 38.6% and 40.9%, respectively. The significant data limitations high-
light the importance of continuous long-term hydrological records for understanding river systems, as they are 
essential for detecting long-term trends and seasonal patterns in river behavior.

In situ river temperature measurements.  River water temperature data are markedly less accessible to 
the public than discharge measurements are. In this study, we primarily utilized the ART-Russia dataset, which 
provides long-term temperature observations from the Russian Arctic region17 (https://www.r-arcticnet.sr.unh.
edu/RussianRiverTemperature-Website/). All the measurements in this dataset were collected before 2003. For 
the 25 rivers listed in Supplementary Table 1, this dataset comprises observations from 14 rivers monitored across 
16 stations. The observations were conducted by Roshydromet of Russia and were subsequently compiled and 
published via a collaborative effort between scientists from the State Hydrological Institute (SHI) of Russia and 
the UNH of the United States. Given the high variability in river temperature, measurements were conducted 
twice daily, at 8:00 AM and 8:00 PM, with a precision of 0.1 °C17. The data are presented as 10-day average values 
rather than daily values, yielding three monthly records per station on the 5th, 15th, and 25th of each month. 
While these observations focus primarily on the warm season (ice-free period), winter measurements are also 
included.

The ART-Russia dataset encompasses three temperature versions: T0, T1, and T2. The T0 version contains 
raw data after basic quality control, the T1 version represents a cleaned dataset with modifications at warm 
season boundaries, and the T2 version is derived from the T1 version by setting all winter temperatures to 0 °C. 
Although T1 and T2 were processed for specific applications, such as ice-free period analysis and energy flux 
calculations, these adjustments are not necessary for our study. Hence, we selected T0 because it offers the largest 
sample size (13,470 records) while ensuring adequate quality control for our research objectives.
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ERA5-Land.  The high-resolution ERA5-Land reanalysis dataset is produced by the European Centre for 
Medium-Range Weather Forecasts (ECMWF) and is designed to provide detailed land surface information36 
(https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR). 
Derived from global ERA5 reanalysis with a spatial resolution of ~31 km, the ERA5-Land dataset improves upon 
the original dataset by providing a finer resolution of ~9 km, thus facilitating a more precise representation of land 
surface processes. Additionally, ERA5-Land focuses specifically on land surface variables, such as soil moisture 
and surface temperature, rendering it particularly valuable for terrestrial hydrology and climate research37,38. This 
dataset covers the period from 1950 to the present, providing both hourly and monthly data that enable historical 

Fig. 1  (a) Map of the watershed, monitoring stations and estuary of the 25 selected Arctic-draining rivers in 
this dataset. (b) Temporal coverage for 25 Arctic-draining rivers from 1950 to 2023.
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reconstruction and analysis of long-term trends. The capacity to provide continuous, long-term time series of 
environmental parameters renders the ERA5-Land dataset particularly suitable for river discharge reconstruc-
tion studies, as it ensures temporal consistency and completeness of the input data. In this study, we utilized 14 
variables from the ERA5-Land dataset to reconstruct the river discharge and temperature, leveraging its fine tem-
poral and spatial resolutions to capture the complex interactions between climate and hydrological dynamics. We 
downloaded daily average data from the Google Earth Engine (GEE) to ensure alignment with river observations, 
including the 2-m temperature, 2-m dewpoint temperature, soil temperature of the top layer, snow depth, snow-
fall, snowmelt, evaporation, precipitation, surface and subsurface runoff, 10-m wind (u- and v-components), and 
surface solar and thermal radiation fluxes. Although ERA5-Land runoff has known discrepancies in long-term 
trend estimates compared with Arctic observations24, it was used as a candidate predictor rather than a determin-
istic input. Our model is designed to select relevant features based on their predictive performance rather than 
their absolute values or trends.

Other river data.  The Simulated Topological Network (STN-30p), which is designed for hydrological 
and climate applications, is a global river routing dataset with a 30 arc-minute spatial resolution39. This dataset 
includes several key variables that represent various aspects of river networks, such as river routing, drainage 
basins, and flow direction. Among these variables, the catchment layer provides clear information on the drainage 
area of each pixel, thereby quantifying the area contributing to river flow at specific points. We applied this dataset 
to convert discharge measurements from downstream sites to river mouths, as described in the “River discharge 
reconstruction via machine learning regression” section.

Another auxiliary river dataset is the Global River Widths from Landsat (GRWL) dataset, which is a global 
river width product that provides high-resolution measurements of river and stream geometries40 (https://zenodo.
org/records/1297434). Derived from Landsat satellite imagery, the GRWL dataset contains over 58 million  
measurements of river widths under mean annual discharge conditions, covering rivers wider than 30 m. In our 
study, the GRWL data support river temperature reconstruction and subsequent analysis.

Machine learning regression models.  Frequent discontinuities in the in situ river discharge and temper-
ature records render traditional time series prediction methods unsuitable for reconstruction (Fig. 1b). Therefore, 
we adopted regression-based machine learning approaches to estimate daily missing values and reconstruct com-
plete time series. Four widely used ensemble learning models—Random Forest (RF), Gradient Boosting (GB), 
eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—were employed. 
These models represent two major ensemble strategies—bagging (RF) and boosting (GB, XGBoost, and 
LightGBM)—and were selected for their proven effectiveness in handling nonlinear relationships, missing data, 
and diverse feature sets in environmental modeling tasks.

	 1)	 RF: The RF model is a bagging-based ensemble method that builds multiple decision trees using randomly 
resampled subsets of the training data41. Each tree contributes to the final prediction, and the model output 
is obtained by averaging the predictions of all trees. Random feature selection at each node split further 
reduces tree correlation, improving generalization and robustness41.

	 2)	 GB: GB is a boosting-based technique that constructs trees sequentially, with each new tree trained to 
minimize the errors of its predecessors42. It focuses on learning on samples with larger residuals, gradual-
ly reducing the overall prediction error. A learning rate is applied to control each tree’s contribution and 
prevent overfitting.

	 3)	 XGBoost: XGBoost enhances traditional gradient boosting with several algorithmic innovations, including 
regularization, parallel computation, and optimized tree construction43. It is known for its high computa-
tional efficiency and accuracy and is particularly well suited for large-scale structured data44.

	 4)	 LightGBM: LightGBM is a highly efficient gradient boosting framework optimized for speed and memory 
usage45. It introduces histogram-based feature binning and a leaf-wise tree growth strategy to accelerate 
training. LightGBM also supports parallel learning and advanced regularization techniques, making it 
effective for high-dimensional or sparse data.

While these models are powerful and flexible, they also have limitations. As non-temporal regression models, 
they do not explicitly account for long-term temporal dependencies, which may affect their ability to represent 
low-frequency variability. Additionally, their performance depends on the quality and distribution of the input 
data, and their “black-box” nature limits interpretability compared with physically based hydrological models. 
These limitations should be considered when applying the reconstructed results in process-oriented analyses.

Evaluation metrics.  Several evaluation metrics were employed to assess the performance of the regression 
models for river discharge prediction, namely, the NSE46, Kling–Gupta efficiency (KGE)47, and normalized root 
mean square error (NRMSE), which can be calculated as follows:
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where Q iobs,  is the observed discharge value at the i-th time step, Qpred i,  is the predicted discharge value at the i-th 
time step, Qobs is the mean of the observed discharge values, r is the Pearson correlation coefficient between the 
observed and predicted discharge values, α is the ratio of the standard deviation of the predicted to observed 
values, β is the ratio of the mean of the predicted values to the mean of the observed values, and n is the total 
number of observations.

The NSE and KGE values range from negative infinity to 1, where 1 indicates perfect agreement between the 
observed and predicted values. The NRMSE approaches zero with increasing model accuracy, reflecting smaller 
relative prediction errors.

River discharge reconstruction via machine learning regression.  To address the challenge of miss-
ing discharge data for Arctic-draining rivers, we developed a machine learning-based approach to reconstruct 
daily discharge values, as outlined in Fig. 2. Given that each river system exhibits unique characteristics and 
response patterns to environmental factors, we implemented separate models for each river. This river-specific 
approach allows the models to better capture the distinct relationships between environmental variables and dis-
charge within each watershed, indirectly reflecting the influence of local geographical, climatic, and hydrological 
conditions through individualized model training. Our methodology comprises the following steps:

	(1)	 Preparation of model input features
Environmental data from the ERA5-Land dataset were collected for the 1950–2023 period to construct 
input features on a daily basis. Following common practices in hydrological modeling, we incorporated 

Fig. 2  Flow chart of establishing a discharge reconstruction model for each Arctic-draining river.
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multiple temporal scales to capture hydrological processes operating at different timescales. The mean 
values of 14 environmental variables (detailed in the “ERA5-Land” section) were calculated across four 
time windows (2, 15, 30, and 45 days). These time windows were selected to represent different hydrolog-
ical response times, from rapid discharge generation (2 days) to slower subsurface flow processes (15–45 
days)48,49. These variables were computed separately for each river station and the corresponding upstream 
catchment area. This approach yielded a total of 112 features (2 locations × 4 time windows × 14 variables), 
ensuring that the model captured both short- and long-term hydrological processes. The upstream catch-
ment area of each river station was delineated via the GRDC product. Additionally, the Julian day and its 
cosine value were incorporated as supplementary features to represent seasonal discharge patterns.

	(2)	 Feature selection and model tuning
Given the irregular temporal gaps in discharge records and the absence of suitable continuous time series, 
we adopted a regression-based modeling strategy, treating each daily observation as an independent sam-
ple. Following a river-specific modeling framework, we evaluated four ensemble machine learning algo-
rithms—RF, GB, XGBoost, and LightGBM—each of which has demonstrated effectiveness in hydrological 
prediction tasks.
For each river, the available daily observations were chronologically divided into training (70%), validation 
(15%), and testing (15%) sets. This time-ordered split ensures temporal independence between the training 
and testing data, better simulating real-world reconstruction scenarios.
Prior to training, we performed feature selection using recursive feature elimination (RFE), which itera-
tively removes the least important features. The 20 most informative predictors were retained to reduce 
model complexity and minimize overfitting risk.
Considering the extreme seasonal variability in Arctic discharge—particularly sharp spring peak flows—a 
targeted data augmentation strategy was designed. Peak flow samples (defined as those above the 90th 
percentile in the training set) were synthetically oversampled: each was duplicated 10 times with small 
random perturbations (±1%) applied to feature values. This enhanced the model’s sensitivity to peak dis-
charge events, which are both hydrologically important and often underrepresented in training data.
All the models were tuned using a random search with 5-fold cross-validation implemented via Rand-
omizedSearchCV in scikit-learn (v1.4.2) for RF and GB, XGBoost (v2.0.3), and LightGBM (v4.5.0). This 
approach allows for efficient exploration of the hyperparameter space and leverages internal cross-valida-
tion to reduce the risk of overfitting50. The validation set was used to assess whether peak-flow augmenta-
tion improved performance. If the model trained on augmented data had a higher NSE on the validation 
set than did the baseline model, the augmented dataset was adopted for final training. To quantify predic-
tion uncertainty, we implemented model-specific approaches. For RF, uncertainty bounds were derived 
from the distribution of outputs across all trees, while for GB, XGBoost, and LightGBM, the models were 
trained using quantile regression to estimate 2.5% and 97.5% prediction intervals.

	(3)	 Final training and model selection
After determining the use of data augmentation, the training and validation sets were combined to retrain 
the final model. For algorithms supporting early stopping (XGBoost, LightGBM, GB), 10% of the com-
bined data were held out as an internal evaluation set to monitor performance and prevent overfitting. 
Training was terminated if no improvement was observed after 40 rounds. For models that do not support 
early stopping (e.g., RF), overfitting was controlled via structural hyperparameters such as maximum tree 
depth and minimum samples per leaf.
Model performance was ultimately evaluated on the independent testing set using metrics defined in the 
“Evaluation metrics” section. For each river, the best-performing model was selected based on a hierar-
chical evaluation strategy: models without signs of overfitting were ranked by test set performance; if all 
models showed signs of overfitting, the model with the best trade-off between generalization and accuracy 
was chosen. The selected model was then applied to reconstruct missing daily discharge values.

	(4)	 Postprocessing for temporal consistency
To improve the accuracy and coherence of the reconstructed discharge series, a two-stage postprocessing 
procedure was applied.
First, a correction was introduced to address the tendency of the models to underestimate peak flows. 
Based on the 90th percentile of the training data, a segmented linear correction was developed using 
training data and evaluated on the validation set. A smoothing zone ( ± 10% around the threshold) was 
used to ensure a gradual transition in correction strength. This adjustment was applied only when it led to 
improvements in both the overall NSE and peak flow NSE in the validation set.
Second, to ensure temporal consistency across the reconstructed segments, we implemented a continuity 
adjustment step. For missing segments shorter than 20 days and occurring outside the peak flow period 
(May–August), linear interpolation was applied, as it effectively captures gradual variations during stable 
flow conditions. For all other segments, a boundary-matching adjustment was applied to minimize dis-
continuities at the junctions between the observed and predicted values. This method optimizes a penalty 
function based on boundary mismatch and adjusts the first and last few days of each filled segment (up 
to 10% of the segment length or 10 days, whichever is smaller), while preserving the internal values. This 
two-step strategy improves both the amplitude accuracy and temporal smoothness of the reconstructed 
discharge time series.
By applying this methodology to all 25 rivers, we were able to obtain continuous daily discharge time 
series. Figure 3 shows examples of four typical rivers with substantial data gaps in their historical records—
namely, the Onega, Indigirka, Taz, and Anadyr Rivers. These examples demonstrate how our approach 
reconstructs missing values and produces continuous discharge records at gauging stations.
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	(5)	 Conversion from station to river mouth discharge values
The steps described above yielded reconstructed continuous discharge time series at the downstream gaug-
ing stations. As this study focused on riverine freshwater input to the ocean, we then estimated the dis-
charge at river mouths from these station-based values. Following the method of Dai and Trenberth51, the 
station discharge values were scaled to obtain river mouth discharge values via catchment area ratios. For 
this transformation, drainage area ratios were utilized from the STN-30p product, which provides gridded 

Fig. 3  Examples of reconstructed daily discharge time series for the 1950–2023 period at four gauging stations 
with substantial missing records: (a) Onega, (b) Indigirka, (c) Taz, and (d) Anadyr rivers. The continuous time 
series are composed of observed values (blue), model predictions (green), linear interpolation (yellow), and 
boundary-matched values (red).
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watershed area data at a 0.5° spatial resolution. For most rivers, the gauged catchment area exceeded the 
STN-30p unit. Only three rivers had slightly smaller catchments, but in all the cases, the station catchment 
area accounted for more than 98% of the STN-30p grid area, minimizing potential mismatches. The river 
mouth discharge Qmouth can be estimated as follows:

Q Q
C
C (4)

mouth station
mouth

station
= ⋅

where Cmouth and Cstation denote the catchment areas at the river mouth and station locations, respectively, and 
Qstation denotes the discharge at the river station. We calculated the ratio between the STN-30p drainage area at 
the river mouth grid cell and that at the downstream gauging station grid cell. For all the rivers, this ratio ranged 
between 1.0 and 2.8. To ensure the appropriateness of applying area-ratio scaling, we visually inspected satel-
lite imagery to confirm the hydrological connectivity between the gauging station and the corresponding river 
mouth. Based on this assessment, we applied the scaling method to all rivers in the dataset.

River temperature and heat flux reconstruction via machine learning regression.  Building upon 
the discharge reconstruction method, we developed a modified approach for river temperature reconstruction 
across the pan-Arctic region (Fig. 4). While discharge observations were available for all 25 rivers in this study, 
water temperature measurements were available for 14 rivers, corresponding to 16 gauging stations. Two of 
these stations are located upstream but were included due to the availability of both discharge and temperature 
records, necessitating a different modeling strategy. In contrast to our discharge reconstruction approach, where 
river-specific models were developed for each individual river, here, we constructed a unified temperature model 
to estimate river temperatures at any location across the pan-Arctic region.

The feature selection process was modified from the discharge reconstruction approach to better capture 
local influences on river temperature. Given that river temperatures are influenced primarily by local conditions, 
we excluded watershed-scale variables from the ERA5-Land dataset and retained only point-scale variables at 
the measurement locations. To account for river-specific characteristics that influence temperature dynamics, 
we incorporated additional physical parameters, including the river width from the GRWL dataset and the 
catchment area from STN-30p. Recognizing the influence of discharge on river temperature, we also included 
the reconstructed discharge data from our previous analysis as input feature data. In addition to the temporal 
windows used in discharge reconstruction (2, 15, 30, and 45 days), we incorporated a 7-day window based on 
previous studies that documented the air–water temperature relationships in Arctic rivers52. These multiple 
temporal windows were applied to all dynamic variables to capture both short-term responses and longer-term 
dependencies in temperature patterns and their driving factors.

To validate our approach, we implemented a cross-validation strategy using data from 16 monitoring sta-
tions. For the discharge reconstruction, we evaluated four machine learning models—RF, GB, XGBoost, and 
LightGBM—for river temperature prediction. The model with the best overall cross-validation performance 
across the stations was then selected for training the final unified temperature reconstruction model. For each 
station, we used data from the remaining 15 stations as the training dataset while reserving the data of the tar-
get station as the testing dataset. This approach allowed us to assess the model’s ability to predict temperatures 
at locations not included in the training data, thereby evaluating its spatial transferability. After confirming 

Fig. 4  Flow chart of establishing a unified river temperature reconstruction model for the pan-Arctic region.
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satisfactory model performance via this validation process, we developed a final model trained with the com-
plete dataset from all stations. This unified model was then applied to directly estimate temperatures at river 
mouths via local environmental parameters, enabling consistent temperature estimates across all Arctic-draining 
rivers, including those without historical temperature measurements. As with discharge reconstruction, pre-
diction uncertainty was also quantified for river temperature estimates using model-specific approaches: 
ensemble-based interval estimation for RF and quantile regression for GB, XGBoost, and LightGBM.

The application of this unified model is illustrated in Fig. 5 through two contrasting examples. The recon-
struction for the Kolyma River represents a case where historical observations were available for model valida-
tion, whereas the Yana River demonstrates the model’s capability to generate temperature estimates for rivers 
without any historical measurements, highlighting the spatial transferability of our approach.

The river heat flux (relative to the water freezing point) is calculated via a universal equation that is widely 
applicable for quantifying heat transport in river systems19,53:

ρ= ⋅ ⋅ ⋅ ⋅HF Cp Q W86400 (5)

where HF is the daily heat flux (106 MJ); Q is the daily mean river discharge (m³/s); T is the daily mean water 
temperature (°C); Cp is the specific heat capacity of water, with a fixed value of 4.184 J/(g·°C); ρ is the water 

Fig. 5  Examples of reconstructed daily temperature time series for the 1950–2023 period at two river mouths: 
(a) Kolyma and (b) Yana Rivers. The continuous time series are composed of observed values (blue), model 
predictions (green), linear interpolation (yellow), and boundary-matched values (red).
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density, with a fixed value of 106 g/m³; and 86400 is the number of seconds in one day. Both the discharge and 
temperature data were derived from previous reconstructions.

Data Records
The dataset is available at Zenodo (15811422)54. The dataset package primarily includes our reconstructed data 
to fill gaps in historical observational records. It comprises three main components: (1) metadata for each river, 
including station name, station and estuary coordinates, and catchment area; (2) tabulated results of recon-
structed daily river discharge, temperature, and heat flux. These files provide the reconstructed daily records 

Fig. 6  Statistical metrics for discharge reconstruction for 25 Arctic-draining rivers: (a) NSE, (b) KGE, and (c) 
NRMSE.
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for the 1950–2023 period. All the data are stored in UTF-8-encoded CSV files, thus ensuring compatibility with 
standard analytical platforms.

To obtain a comprehensive and continuous daily dataset from 1950 to 2023, users can combine our 
reconstructed values with the original historical observational data. Clear instructions and links for down-
loading the original observational data used in this study can be found at https://github.com/zhwang24/
RADIT-Reconstructed-Arctic-River-Data.

Each table file is named according to the river and station it represents (e.g., Lena__Kyusyur.csv) to ensure 
straightforward identification. Each file contains the following columns:

	(1)	 Date: A timestamp in the YYYY-MM-DD format, covering the entire period from January 1, 1950, to 
December 31, 2023.

	(2)	 Station discharge: The daily reconstructed discharge and its uncertainty at the monitoring station (units: m³/s).
	(3)	 Mouth discharge: The daily reconstructed discharge and its uncertainty at the river mouth (units: m³/s).
	(4)	 Mouth temperature: The daily reconstructed water temperature and its uncertainty at the river mouth 

(units: °C).
	(5)	 Mouth heat flux: The daily reconstructed heat flux and its uncertainty at the river mouth (units: MJ).

Technical Validation
Validation of the reconstructed river discharge.  To evaluate the reliability and accuracy of our dis-
charge dataset, we conducted a comprehensive validation using the testing data previously derived from the  
in situ observations recorded at the 25 gauging stations. The validation was performed by comparing our esti-
mated values with these independent measurements across rivers of different sizes.

The validation results demonstrated the robust performance of our machine learning framework in recon-
structing missing discharge data across rivers.

Given that separate models were developed for each river to account for their unique hydrological character-
istics, we evaluated the model performance on a river-by-river basis rather than providing aggregated statistics. 
The detailed performance metrics for each river are shown in Fig. 6. The results revealed a consistently high 
reconstruction accuracy across the rivers studied. The NSE values ranged from 0.520 to 0.934, with a median 
value of 0.861, indicating excellent model performance. Notably, 21 out of 25 rivers yielded NSE values above 
0.8. Similarly, the KGE results demonstrated remarkable agreement between the reconstructed and observed 
discharge patterns, with a median value of 0.870. Twenty rivers yielded KGE values exceeding 0.8, and the lowest 
KGE value was 0.592. Furthermore, the NRMSE values confirmed the high accuracy of our reconstruction, with 

Fig. 7  NSE values for reconstructed peak discharge across 25 Arctic-draining rivers.
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a median value of 6.1% and a maximum error of 11.6%, indicating that the reconstructed values closely match 
the observed discharge patterns across all rivers. Among the lower-performing rivers, such as Yana, Anderson, 
and Pur, reduced accuracy was associated with factors including extreme discharge events in the testing period 
or notable shifts in baseflow levels relative to those in the training period. These cases highlight the challenges of 
reconstructing discharge under non-stationary hydrological conditions.

In addition to evaluating overall discharge accuracy, we further assessed the model’s ability to reconstruct 
peak discharge events, which are particularly important for hydrological extremes but are inherently more 

Fig. 8  Comparison of NSE performance between this study and the GloFAS product across 25 Arctic-draining 
rivers. Each river is represented by a pair of bars showing the better- and lower-performing products. The color 
indicates the data source (blue for this study and orange for the GloFAS), and depth reflects NSE values.
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challenging to model. Here, we defined peak discharge for each river as values exceeding the 90th percentile 
within the training dataset. The NSE values calculated specifically for these peak flows are summarized in Fig. 7. 
The results highlight the inherent difficulty of modeling extreme flows, particularly in data-sparse Arctic basins. 
Among all the rivers, 16 exhibited positive NSE values for peak discharge. The overall median NSE was 0.186, 
with the highest value observed for the Mezen River (NSE = 0.663), indicating strong agreement for peak flow 
events. For rivers where the model performed less well in terms of peak flows, the NSE values generally fell 
between –1 and 0. Only the Ob River yielded an NSE below –1, suggesting relatively poor skill in capturing 
extreme discharge magnitudes in that basin. Nevertheless, the results demonstrate that the model captures peak 

Fig. 9  Statistical metrics of the XGBoost-based temperature reconstruction model across 16 stations using 
leave-one-out cross-validation: (a) NSE, (b) KGE, and (c) NRMSE.
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discharge patterns with reasonable accuracy for a majority of rivers, further supporting the robustness of the 
reconstruction framework.

To further assess the effectiveness of our reconstruction framework, we compared it against the Global Flood 
Awareness System (GloFAS) product55 (https://doi.org/10.24381/cds.a4fdd6b9), an operational global discharge 
dataset developed by the Copernicus Emergency Management Service (CEMS). GloFAS Version 4 provides 
daily river discharge estimates at a spatial resolution of 0.05° × 0.05° from 1979 to present, covering all global 
river systems. Figure 8 presents a comparative analysis of NSE values between our reconstructed dataset and the 
GloFAS across the 25 Arctic-draining rivers. For each river, the method yielding the higher NSE is shown on 
the left, while the lower-performing product is shown on the right. The color hues represent the different data 
sources (blue for this study, orange for GloFAS), and the color intensity reflects the magnitude of the NSE. The 
results indicate that our machine learning-based reconstruction outperforms the GloFAS on 23 of the 25 rivers. 
The results of the GloFAS slightly exceeded those of our method only for the Back and Indigirka Rivers. These 
validation results collectively demonstrate that our machine learning framework can effectively reconstruct 
missing daily discharge data while maintaining high accuracy and reliability across rivers that differ substantially 
in discharge magnitude, catchment size, and climate conditions.

Validation of the reconstructed river temperature.  For river temperature reconstruction, a similar 
machine learning approach was adopted but with a different validation strategy due to the limited data availa-
bility. Based on the cross-validation performance across all the candidate models, XGBoost outperformed the 
other models and was selected as the final algorithm for temperature reconstruction. As previously described, we 
implemented a leave-one-out cross-validation approach, where the data of each station were iteratively used as 
validation data, while the data from the remaining stations served as training data.

The cross-validation results demonstrated reliable reconstruction accuracy (Fig. 9). The NSE values ranged 
from 0.838 to 0.954, with a median value of 0.906, and the KGE values ranged from 0.831 to 0.950, with a median 
value of 0.905. The NRMSE values ranged from 6.4% to 10.6%, with a median of 8.0%. These consistently high 
values of the performance metrics across the different validation stations indicate that our unified model has 
favorable adaptability and generalizability. This notable performance suggests that the model can be reliably 
applied to reconstruct river temperatures at ungauged locations where observational data are not available.

To further evaluate the geographical transferability of our unified model, which was trained via Russian river 
observations prior to 2003, we validated the model results against temperature data from the Pilot Station on 
the Yukon River in Alaska (the only station in the North American Arctic meeting our validation data require-
ments). The validation was performed using 1,609 daily observations from the post-2014 period. The validation 
yielded satisfactory results, with an NSE value of 0.885, a KGE value of 0.754, and an NRMSE value of 8.1%, 
demonstrating strong performance across both the spatial and temporal domains.

In conclusion, this study presents a comprehensive machine learning-based reconstruction of Arctic river 
discharge, temperature, and heat flux data, making meaningful progress toward improving data availability 
in regions with limited hydrological observations. The robust performance of our reconstruction approach, 
demonstrated by consistently high validation metrics across different temporal and spatial scales, ensures the 
reliability of this dataset for various research applications. The continuous daily records spanning seven dec-
ades, combined with extensive spatial coverage across the pan-Arctic region, make it a valuable resource for 
validating and improving climate models, especially in their representation of land‒ocean interactions in the 
Arctic region. These advances in data availability will support more comprehensive analyses of Arctic envi-
ronmental changes and their global implications. While this dataset covers the most hydrologically significant 
Arctic rivers, we acknowledge that contributions from smaller or ungauged basins remain unaccounted for. 
Future efforts may build upon this work by developing pan-Arctic statistical models that incorporate basin 
characteristics to extend estimates to unmonitored regions, thereby enabling more complete assessments of 
Arctic freshwater budgets.

Code availability
The custom GEE and Python scripts used in this study are available under the Massachusetts Institute of Technology 
(MIT) license. The repository at https://github.com/zhwang24/RADIT-Reconstructed-Arctic-River-Data  
provides script names and inline comments to support their application, covering three main aspects: (1) 
ERA5-Land data download: GEE scripts for retrieving daily ERA5-Land meteorological and hydrological 
data used in the reconstruction process. (2) Discharge, temperature, and heat flux reconstruction: Python 
scripts for performing the machine learning-based reconstructions of missing data, extending the time series, 
and generating the final RADIT dataset. (3) Integrating original observations for a complete dataset: Clear 
instructions and Python scripts for obtaining the original historical river discharge data from their publicly 
available sources and for seamlessly merging them with the reconstructed data provided in the RADIT dataset, 
enabling users to assemble a comprehensive and continuous daily record.
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