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A chromosomal-level genome 
assembly of Odontolabis cuvera 
Hope, 1842 (Coleoptera: Lucanidae)
Ming Zhu1 ✉, Yanting Han2, Jingjing Zhang3 & Junhui Yan1

The stag beetle (Coleoptera: Lucanidae) represents a captivating and evolutionarily significant group, 
regarded as one of the most basal lineages within the superfamily Scarabaeoidea. Despite their 
importance for studying beetle evolution and ecology, genomic resources for this family remain scarce. 
Here, we report a chromosome-level genome assembly of Odontolabis cuvera, generated by integrating 
PacBio HiFi, Illumina, and Hi-C data. The genome assembly spans 908.07 Mb, comprising 66 scaffolds 
(scaffold N50: 65.36 Mb) and 147 contigs (contig N50: 16.39 Mb). A total of 99.58% (904.22 Mb) of 
the assembly was anchored to 14 chromosomes. BUSCO analysis (insecta_odb10 dataset, n = 1,367) 
demonstrated high completeness, with 99.1% of conserved insect orthologs identified (98.3% single-
copy, 0.8% duplicated). Repetitive elements accounted for 53.00% (281.28 Mb) of the genome, and 
a total of 18,332 protein-coding genes were annotated. This high-contiguity genome provides a 
critical foundation for uncovering the evolutionary mechanisms and ecological adaptations unique to 
Lucanidae.

Background & Summary
Stag beetles (family Lucanidae) belong to the superfamily Scarabaeoidea within the order Coleoptera, com-
prising approximately 1,500 species distributed globally1. Male stag beetles are renowned for their enlarged 
mandibles, which they use in combative displays to secure preferred mating sites and food competition2. Owing 
to their striking morphology and complex behavior, many lucanid species have become model organisms for 
studies on behavioral ecology and functional morphology3. Their impressive mandibles also contribute to their 
popularity as exotic pets and valuable items in private collections4. Stag beetle larvae develop in and feed on 
decaying wood, playing a crucial role in forest ecosystems by promoting wood decomposition, nutrient recy-
cling, and vegetation regeneration5,6. Adults of many species are nocturnal and primarily feed on tree sap and 
fermenting fruits4,7. Due to their ecological role and sensitivity to habitat changes, lucanid beetles are considered 
reliable bioindicators of forest matter cycling and ecosystem health8.

These beetles are distributed globally, occurring on all continents except Antarctica and inhabiting a diverse 
array of ecosystems, including forests, grasslands, and deserts9. The Lucanidae family is considered one of the 
most basal lineages within the superfamily Scarabaeoidea, underscoring its significant evolutionary impor-
tance10,11. Current research on stag beetles has primarily focused on taxonomy and phylogenetic relationships, 
drawing on nuclear gene fragments and mitochondrial multi-gene sequences12. High-quality genomic data are 
essential for gaining deeper insights into the evolutionary placement of Lucanidae within Scarabaeoidea. As of 
April 2025, only six Lucanidae genomes have been deposited in the NCBI database. In contrast to the rapidly 
growing number of genome assemblies for other beetle families, the availability of high-quality genomes for 
Lucanidae remains limited, highlighting the urgent need for additional genome sequencing and assembly efforts 
in this group.

To deepen our understanding of Lucanidae evolution and ecological adaptations, we assembled a 
chromosome-level genome of Odontolabis cuvera (Boisduval, 1835) by integrating PacBio HiFi long reads, 
Illumina short reads, and Hi-C data. Comprehensive genome annotation was performed, including identifying 
repetitive elements, non-coding RNAs, and protein-coding genes. This high-quality reference genome marks 
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a significant advancement in Lucanidae research and provides a valuable genomic resource for exploring this 
beetle family’s evolutionary history and ecological adaptations.

Methods
Sample collection and sequencing.  A single female specimen of O. cuvera was collected in Yunnan 
Province, China, on 24 October 2024 for concurrent DNA and RNA sequencing. Muscle tissue was carefully 
extracted from the pronotum and posterior abdominal segments. The tissue was washed in phosphate-buffered 
saline for five minutes to eliminate external contaminants. It was then flash-frozen in liquid nitrogen for 20 minutes 
and subsequently stored at −80 °C until sequencing procedures were initiated.

Genomic DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen), and total RNA was isolated 
with TRIzol Reagent (Thermo Fisher Scientific), following the manufacturers’ standard protocols. Illumina 
TruSeq DNA PCR-Free Kit was used to construct PCR-free libraries, yielding 150 bp paired-end reads. Hi-C 
libraries were generated by formaldehyde cross-linking, followed by MboI digestion, end-repair, and purifica-
tion steps, following a standard protocol13. Short-read data were generated using the Illumina NovaSeq. 6000 
platform. A 20 kb SMRTbell library was constructed (PacBio SMRTbell Express Template Prep Kit 2.0) and 
sequenced in HiFi mode on a PacBio Sequel II system. Berry Genomics (Beijing, China) conducted all library 
preparations and sequencing. In total, our sequencing efforts generated 160.95 Gb of data, including 36.70 Gb 

Libraries
Insert sizes 
(bp)

Clean data 
(Gb)

Sequencing 
coverage (x)

Illumina 350 28.89 37.82

PacBio HiFi 20 Kb 26.86 29.58

Hi-C 350 48.68 53.61

RNA 350 9.71 —

Table 1.  Statistics of the sequencing data used for genome assembly.

Fig. 1  Genome size estimation of Odontolabis cuvera using GenomeScope.

Assembly Total length (Mb)
Number scaffolds/
contigs (chromosomes)

Scaffold/contig 
N50 length (Mb) GC (%)

BUSCO (n = 1,367) (%)

C S D F M

Hifiasm 1,034.77 308/308 21.53/21.53 32.94 99.5 94.7 4.8 0.2 0.3

Purge_Dups 937.46 90/90 19.25/19.25 32.72 99.1 98.1 1.0 0.3 0.6

3D-DNA 937.47 228/311 (14) 65.36/16.17 32.72 99.1 98.3 0.8 0.3 0.6

Final 908.07 66/147 (14) 65.36/16.39 32.65 99.1 98.3 0.8 0.3 0.6

Table 2.  Genome assembly statistics for Odontolabis cuvera. C: complete BUSCOs; S: Complete and single-copy 
BUSCOs; D: complete and duplicated BUSCOs; F: fragmented BUSCOs; M: missing BUSCOs.

https://doi.org/10.1038/s41597-025-05613-5


3Scientific Data |         (2025) 12:1258  | https://doi.org/10.1038/s41597-025-05613-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

of PacBio HiFi long reads (61.02× coverage), 56.09 Gb of Illumina short reads (93.26×), and 58.56 Gb of Hi-C 
data (97.36×) (Table 1). PacBio HiFi sequencing generated reads with a scaffold N50 of 15.88 kb and an average 
read length of 15.93 kb.

Chromosome ID Sequences Length (Mb)

Chr01 94.68

Chr02 93.48

Chr03 84.37

Chr04 66.45

Chr05 65.90

Chr06 65.36

Chr07 60.19

Chr08 57.44

Chr09 57.07

Chr10 56.49

Chr11 52.18

Chr12 51.27

Chr13 50.25

Chr14 49.09

Table 3.  Statistics for chromosomes sequence length.
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Fig. 2  Genome-wide chromosomal heatmap of Odontolabis cuvera, with individual chromosomes outlined in 
blue and contigs outlined in green.
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Genome assembly.  Raw Illumina reads were processed for quality control using BBTools v38.8214. 
Duplicate reads were first removed with “clumpify.sh”. Subsequently, bbduk.sh was applied to trim low-quality 
bases and adapter sequences according to strict quality criteria. This process involved discarding reads with 
Q < 20, removing reads with >5 Ns, trimming poly-A/G/C tails longer than 10 bp, and correcting overlapping 
paired reads. We conducted a k-mer-based genome survey analysis using GenomeScope v2.015 to estimate the 
genome size, heterozygosity, and repetitive sequence content of the O. cuvera genome. The estimated genome 
size ranged from 900.52 to 906.45 Mb, with repetitive elements comprising approximately 37.18–37.19% of the 
total genome. The analysis also revealed a heterozygosity rate of 1.13–1.39%, indicating a moderately high level 
of genetic diversity (Fig. 1).

The primary genome assembly of O. cuvera was performed using PacBio HiFi long reads with Hifiasm 
v0.19.816, applying default parameters. To eliminate redundant heterozygous sequences, Purge_Dups v1.2.517 
was employed with a haploid cutoff value of 70 to identify and remove haplotigs effectively. Following quality 
control, Hi-C reads were aligned to the draft assembly using Juicer v1.6.218. Chromosome-level scaffolding was 
carried out with 3D-DNA v18092219, anchoring the primary contigs into chromosome-scale assemblies. The 
resulting genome assembly was meticulously reviewed, and any potential misassemblies were manually cor-
rected using Juicebox v1.11.0818. To detect potential contaminants, we employed MMseqs. 2 v11.120 to conduct 
BLASTN-like searches against both the NCBI nucleotide and UniVec databases. Additional screening for vector 
contamination was performed using blastn (BLAST + v2.11.0)21 against the UniVec database. Sequences with 
over 90% identity to entries in either database were flagged as potential contaminants, while those with 80–90% 
identity underwent further verification through online BLASTN searches against the NCBI nucleotide data-
base. Suspected bacterial and fungal contaminants were subsequently removed from the assembled sequences. 
The final O. cuvera genome assembly achieved chromosome-level resolution, with a total size of 908.07 Mb, 
comprising 66 scaffolds and 147 contigs, and a GC content of 32.65% (Table 2). A total of 81 gaps were present 
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Fig. 3  Genome characteristics of Odontolabis cuvera. The circular genome plot displays, from the outermost to 
the innermost ring: (1) chromosome length, (2) GC content, (3) gene density, and (4) the distribution of major 
transposable elements, including DNA transposons, SINEs, LINEs, LTR retrotransposons, and simple repeats.
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in the assembly. The scaffold and contig N50 values were 65.36 Mb and 16.39 Mb, respectively. In total, 99.58% 
of the assembled sequence (904.22 Mb) was successfully anchored to 14 chromosomes, which were ordered by 
descending length and ranged from 49.09 Mb to 94.68 Mb (Table 3; Figs. 2, 3).

Genome annotation.  To characterize repetitive elements in the O. cuvera genome, we performed de novo 
repeat annotation using RepeatModeler v2.0.422, incorporating the “-LTRStruct” pipeline to enhance the identi-
fication of LTR retrotransposons. The resulting repeat library was merged with RepBase-2023090923 and Dfam 
v3.524 to construct a comprehensive custom repeat database. RepeatMasker v4.1.225 was then employed to identify 
and mask repetitive sequences by aligning the genome against this integrated library. The RepeatMasker analysis 
revealed that approximately 481.28 Mb, accounting for 53.00% of the genome, consists of repetitive sequences. 
These include 233.31 Mb (25.69%) of unclassified repeats, 119.93 Mb (13.19%) of DNA transposons, 86.65 Mb 
(9.55%) of LINEs, 32.94 Mb (3.63%) of LTRs, and 5.86 Mb (0.65%) of simple repeats, along with additional repeat 
categories (Table 4).

Non-coding RNAs (ncRNAs) in the O. cuvera genome were annotated using Infernal v1.1.226 against the 
Rfam v14.1027 database, while tRNAscan-SE v2.0.928 was employed to predict transfer RNAs (tRNAs). In total, 
1,219 ncRNAs were identified, including 4 long non-coding RNAs (lncRNAs), 64 ribozymes, 93 small nuclear 
RNAs (snRNAs), 99 microRNAs (miRNAs), 507 tRNAs, and 222 ribosomal RNAs (rRNAs) (Table 4).

The annotation of protein-coding genes in O. cuvera was conducted using MAKER v3.01.0329, an anno-
tation pipeline that integrates multiple sources of evidence to produce high-confidence gene models. Three 
primary lines of evidence were incorporated: (1) transcriptomic evidence derived from RNA-seq reads aligned 
with HISAT2 v2.2.130 and assembled using StringTie v2.1.631; (2) ab initio predictions from BRAKER v2.1.632, 
incorporating both GeneMark-ES/ET/EP v4.68_lic33 and AUGUSTUS v3.4.034 pipelines trained on RNA-seq 
alignments and OrthoDB v1135 reference proteins; and (3) homology-based predictions generated by GeMoMa 
v1.936, leveraging protein sequences from five reference species: Drosophila melanogaster37 (GCF_000001215.4), 
Apis mellifera38 (GCA_003254395.2), Coccinella septempunctata39 (GCA_907165205.1), Prosopocoilus inqui-
natus40 (GCA_036172665.1), and Tribolium castaneum41 (GCA_031307605.1) (Table 5). The outputs from 
BRAKER and GeMoMa were merged and provided as ab initio input to the MAKER pipeline. A total of 21,798 
predicted protein sequences were identified, reflecting that many genes produce multiple transcript variants. 
When considering only the longest transcript for each gene, the O. cuvera genome contained 18,332 predicted 

Characteristics O. cuvera

Genome assembly

Genome Size (Mb) 908.07

Number of scaffolds 66

Number of contigs 147

Number of chromosomes 14

Number of gaps 81

Scaffold N50 length (Mb) 65.36

Contig N50 length (Mb) 16.39

GC (%) 32.65

BUSCO completeness (%) 99.1

Protein-coding genes

Number 18,332

Mean gene length (bp) 10,552.3

BUSCO completeness (%) 98.8

Repetitive elements

Size (Mb) 281.28 (53.00%)

DNA transposons (Mb) 119.93 (13.19%)

LINEs (Mb) 86.65 (9.55%)

LTRs (Mb) 32.94 (3.63%)

Unclassified (Mb) 233.31 (25.69%)

ncRNA

Number of ncRNA 1,219

tRNA 507

rRNA 222

miRNA 99

snRNA 93

lncRNA 4

sRNA 1

ribozyme 64

Table 4.  Genome assembly and annotation statistics of Odontolabis cuvera.
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protein-coding genes, with an average gene length of 10,552.3 bp. Genes exhibited a mean structure of 5.4 exons, 
4.4 introns, and 5.2 coding sequences (CDSs). Average exon length was 314.6 bp, while introns and CDSs meas-
ured 2,101.4 bp and 262.9 bp, respectively (Table 4). Gene set completeness was evaluated using BUSCO with 
the insecta_odb10 dataset (n = 1,367). The annotated protein-coding gene set exhibited 98.8% completeness, 
including 1,350 (97.7%) single-copy orthologs, 15 (1.1%) duplicated genes, 4 (0.3%) fragmented genes, and 13 
(0.9%) missing genes. These results demonstrate that the gene annotations for O. cuvera are both comprehensive 
and of high quality.

Gene functional annotation was conducted using DIAMOND v2.0.11.142 in sensitive mode (–more-sensitive 
-e 1e-5) to align predicted protein sequences against the UniProtKB database. To further assign Gene Ontology 
(GO) terms, identify metabolic pathways (KEGG and Reactome), and annotate protein domains, we employed 
eggNOG-mapper v2.0.143 and InterProScan v5.53-87.044. The InterProScan analysis incorporated five databases: 
Pfam45, SMART46, SUPERFAMILY47, Gene3D48, and CDD49. Outputs from all tools were integrated to generate 
comprehensive functional annotations. In total, 16,972 genes were annotated with UniProt entries, 11,405 were 
assigned GO terms, 5,467 were mapped to KEGG pathways, 3,096 were associated with Enzyme Commission 
numbers, and 15,008 were classified into Clusters of Orthologous Groups (COG). Additionally, genome-wide 
distributions of repeat elements, gene density, and GC content across individual pseudochromosomes were 
visualized using TBtools50.

Data Records
The raw sequencing data and genome assembly of Odontolabis cuvera are publicly available through the National 
Center for Biotechnology Information (NCBI). The sequencing datasets, including Hi-C (SRR3279340551), 
transcriptome (SRR3183488052), Illumina short reads (SRR3183488153), and PacBio HiFi long reads 
(SRR3183488254), are publicly available under their respective accession numbers. The final genome assembly is 
available under NCBI accession GCA_049462965.155. Genome annotation files, including repeat element pro-
files, gene structure predictions, and functional annotations, are available via Figshare56.

Technical Validation
To evaluate the quality of the Odontolabis cuvera genome assembly, two complementary approaches were 
employed. First, genome assembly completeness was assessed using BUSCO v5.0.457 with the Insecta gene set 
(n = 1,367), revealing a high completeness score of 99.1%, with 98.3% single-copy, 0.8% duplicated, 0.3% frag-
mented, and 0.6% missing BUSCOs. Second, assembly accuracy was verified by mapping PacBio, Illumina, and 
RNA-seq reads to the final assembly using Minimap2 v2.2358 and SAMtools v1.959, achieving mapping rates of 
99.99%, 88.28%, and 97.86%, respectively. These results demonstrate the high completeness and accuracy of the 
O. cuvera genome assembly.

Code availability
No specific script was used in this work. All commands and pipelines used in data processing were executed 
according to the manual and protocols of the corresponding bioinformatic software.
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