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Model datasets of orographical 
perturbation experiments for the 
Mongolian plateau by using CAS 
FGOALS-f3-L
Nuo Xu   1,2,3, Bian He   2,3,4 ✉, Zuowei Xie2,5, Zhongda Lin2,3, Shijian Feng2,3,4, Yimin Liu   2,3,4,  
Guoxiong Wu2,3,4, Qing Bao3, Kangjun Chen   2,3, Natalia Victorovna Vazaeva   6 & 
Shibo Gao1 ✉

Topography is an important forcing for climate change. Compared to the extensively studies of 
Tibetan Plateau, the impact of Mongolian Plateau (MP) is less understood. This paper introduces three 
experiments which examine both the thermal and dynamical effects of the MP and its surrounding 
areas carried out by the climate model CAS FGOALS-f3-L. Each experiment produces 42 variables, 
including monthly, daily average, 6-hourly transient, and hourly outputs for precipitation and surface 
air temperature. The model datasets are all interpolated into nominal 1 degree resolution. The 
validation results show that the control run can well capture the basic circulation pattern over Eurasian 
continent, while the model responses to thermal and dynamical perturbations of MP are reasonable. 
These datasets provide a reference for understanding the response of weather and climate change in 
the middle and high latitudes to the mechanical and thermal forcing of the MP, and help to understand 
the contribution of the MP to the monsoon circulation, winter cold waves and even extreme events in 
the middle and high latitudes.

Background & Summary
The colossal topographies in Asia, exemplified by the Tibetan Plateau (TP), Iranian Plateau (IP) and the 
Mongolian Plateau (MP), exert a pronounced influence on the climate1–9. Previous numerous studies reveal the 
influences of TP and IP on the changes of Asian weather and climate in various aspects. The thermodynamical 
forcing of TP could modulate the monsoon systems, affect regional temperature and precipitation patterns by 
influence the regional land-air-sea interactions10–12. The topographic features of the TP play an indispensa-
ble role in the formation mechanisms of the Asian monsoon, and its influence on seasonal circulation tran-
sitions13–15.Currently, there is significant attention to the dynamical and thermal effects of the TP on climate. 
However, research focusing on the climatic impacts of the MP in mid-high latitudes remains relatively limited.

The uplift of the MP is currently considered a byproduct of the partial collision between the Eurasian con-
tinent and the Indian subcontinent, serving as a supplement to the formation of the TP16. The MP is located in 
the mid-high latitudes of Asia (37°24′N to 53°12′N, 88°34′E to 126°04′E), spanning Mongolia, northern China, 
and southern Russia, with an area of approximately 2 million square kilometers. It extends from the Greater 
Khingan Range in the east to the Altai Mountains in the west. The terrain of the MP gradually slopes downward 
from west to east, with an average elevation of around 1,500 meters. The region is primarily characterized by 
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alpine meadow, upland, and deserts, situated in the transitional zone between the East Asian monsoon and the 
westerlies17.

Although the MP is considerably smaller in scale and elevation compared to the TP, its location is more 
northerly and at higher latitude. This unique geographical position that the MP in the core area of the westerly 
circulation in the Northern Hemisphere. Compared to the main part of TP, the dynamical forcing effect of 
MP on the upper tropospheric westerly jet is more pronounced18. Previous Numerical simulation studies have 
shown that the uplift of the MP significantly enhances planetary waves in the Northern Hemisphere atmos-
phere19,20. Furthermore, MP plays a significant role in near-surface weather and climate systems. Before the 
uplift of MP, the Siberian High (SiH) was located in eastern China with relatively weak intensity. After the uplift 
of MP, SiH shifted northward and intensified, leading to an enhancement of the winter north-westerly wind in 
East Asia21,22. The uplift of the MP also causes the westerly wind belt to shift northward and increases the inten-
sity of the East Asian winter monsoon19,22. These studies indicate that even a relatively small terrain can generate 
substantial dynamical effects due to its specific geographical location. The MP represents a unique topographic 
forcing in the mid-high latitudes of the Asian continent, with an influence far more extensive than anticipated.

Against the backdrop described above, to establish benchmark experiments for more profound and com-
prehensive understanding of the MP’s forcing on the mid-high latitudes circulation changes, and even extreme 
weather occurrences, to advance a more mechanistic understanding of how Asian topography modulates the 
global monsoon system, we have meticulously designed and executed a series of numerical simulation experi-
ments on examining the influences of MP. Compared to the experiments in the Coupled Model Intercomparison 
Project (CMIP6) Global Monsoons Model Intercomparison Project (GMMIP) Tier323, this experiment focuses 
on examining the thermal and dynamical effects of the MP and its surrounding regions. Reviewing previous 
numerical simulation experiments aimed at investigating the climatic impact of the MP, they primarily relied on 
dynamical experimental methods, specifically by applying a “no topography” treatment to MP. However, in this 
experiment, we have additionally incorporated a thermal experiment related to the MP and adjacent regions, 
which has not been conducted by previous studies. The overall objective is to provide new numerical simulation 
experimental data, to further explore the specific impacts of the MP on climate and atmospheric circulation 
change under the combined influence of dynamical and thermal effects. By doing so, we aim to fill the gaps in 
previous research work in this field and provide a better understanding of the dynamical and thermal effects of 
the MP on climate.

Methods
Introduction to numerical model.  We use the Chinese Academy of Sciences (CAS) Flexible Global 
Ocean-Atmosphere-Terrestrial System model, finite-volume version 3 (FGOALS-f3-L) (the ‘L’ denotes a low 
nominal resolution of 100 km). The following is a brief introduction to the FGOALS-f3-L model.

The basic structure of FGOALS-f3-L is as follows: the atmospheric component is the Finite-volume 
Atmospheric Model (FAMIL) version 2.224–26, which is an upgraded version of the Spectral Atmosphere Model 
(SAMIL) of the Next Generation Atmospheric General Circulation Model (AGCM)27–29. Ocean component: 
LASG / IAP Climate System Ocean Mode 3.0 version (LICOM3)30, with high horizontal resolution and vertical 
stratification. Land component: Community Land Model (CLM) version 4.0, used to simulate land surface pro-
cesses. Sea ice composition: Los Alamos Sea Ice Model (CICE4)31, used to simulate sea ice dynamics.

The grid system of FAMIL adopts a cubic sphere grid system, which contains 6 tiles, each of which contains 
96 grids. Globally, the meridional region is divided into 384 grids, and the zonal region is divided into 192 grids, 
with a horizontal resolution of about 1° × 1°. In the vertical direction, 32 layers of mixed coordinates are used, 
and the top of the mode is 2.16 hPa. The flux exchange between the components of FGOALS-f3-L is carried out 
through the 7th edition of the National Center for Atmospheric Research (NCAR) Coupler Module.

The model integrates a multi-scale physical process parameterization scheme to optimize the coupled simu-
lation of the climate system. The boundary layer module uses an improved humidity turbulence parameteriza-
tion scheme32, combined with the latest correction method for shallow convection processes33. Six-hydrometeor 
classification frameworks based on GFDL (Geophysical Fluid Dynamics Laboratory) for cloud microphysi-
cal processes predicted the distribution characteristics of water vapor, cloud water, cloud ice, rain, snow and 
graupel synchronously through a single-moment scheme34,35. The cloud fraction diagnosis module significantly 
improves the simulation accuracy of cloud phase distribution by integrating relative humidity and cloud mixing 
ratio parameters36. Different from the traditional convective parameterization method, the model introduces an 
explicit separated cumulus-stratiform precipitation computer mechanism (FAMIL Development Team, 2017) 
to realize the refined characterization of convective precipitation. In addition, the atmospheric gravity wave drag 
effect is incorporated into the model energy transfer process through the classical dynamic scheme37.

Experimental design.  To investigate the thermal and dynamical effects of MP, three types of Atmospheric 
Model Intercomparison Project (amip) runs were conducted, namely the control run (amip), the no mountain 
run (amip_NMO), and the no sensible heating run (amip_NS_MO). As presented in Table 1, the experiment_id 
of the three experiments and the configurations of each experiment are provided.

The control run (amip), serving as a reference simulation, starting from January 1, 1976, with the first three 
years considered as a spin-up time. All external forcing factors, including greenhouse gases, solar irradiance, 
ozone, and aerosols, are prescribed their historical values. Sea surface temperature (SST) and sea ice concen-
tration are set to observed values. Output data for analysis are provided from January 1, 1979, to December 15, 
2021. The second run (amip_NMO) is dynamical perturbation experiment, the height of the topography in the 
MP and its surrounding regions is modified. The topography above 500 m in the MP and its surrounding regions 
is set to 500 m. Additionally, other land use and surface properties remain unchanged. The output variables time 
is the same as the control experiment. The third run is a thermal perturbation experiment (amip_NS_MO). In 
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this experiment, the topography height retained its original values, but the surface heating effect of the MP to 
the atmosphere is removed. This means that the vertical diffusion heating term from the surface to the atmos-
phere in regions above 500 m on and around the MP is set to zero. The output variables time is the same as other 
experiments.

All the external forcing fields in the experiment are set as monthly average observations according 
to the CMIP6 standard, including: the historical global average data of greenhouse gas concentration from 
Meinshausen et al.38. were used; the solar radiation forcing was derived from the solar activity data set of Matthes 
et al.39.; the ozone concentration is based on the CCMI historical forcing database (from http://blogs.reading.
ac.uk/ccmi/forcing-databases-in-support-of-cmip6/); the SST and Sea Ice data refer to the AMIP data set of the 
program for Climate Model Diagnosis & Intercomparison (PCMDI, available at https://esgf-node.llnl.gov/pro-
jects/esgf-llnl/); the aerosol mass concentration was calculated using the NCAR Community Atmosphere Model 
with Chemistry (CAM-Chem)40, covering five components: sulfate, sea salt, black carbon, organic carbon and 
dust; land use data were set as climatological mean41.

Data Records
The datasets set generated by our numerical simulation experiment has a global spatial resolution of 1° × 1°, 
and spans the period from 1979 to 2021. It comprises 42 variables essential for atmospheric and climate studies, 
including temperature, pressure, humidity, wind speed, precipitation, and other commonly used meteorological 
quantities. These variables consist of 10 multi-level data (with the model’s 32 vertical level) and 32 single-level 
data. The datasets cover different time scales, such as 41 monthly average data, 24 daily average data, 8 six-hourly 
transient data, and 2 one-hourly data. Detailed variable names, abbreviations, units and other related informa-
tion can be obtained in Supplementary Table 1.

The monthly data of this datasets can be publicly available on https://doi.org/10.26050/WDCC/
C6sGMCASFF42, and the daily and hourly data can be publicly available on https://doi.org/10.12392/
IAP-Earthlab.2025.00143. These data are provided in “NetCDF” format and enabling compatibility with standard 
analysis tools such as Python, NCL, MATLAB, and others. The data file of the dataset is named “CMIP6_sup-
plemental GMMIP CAS FGOALS-f3-L xxxx r1i1p1f1 Amon yyyy”, where “CMIP6_supplemental GMMIP CAS 
FGOALS-f3-L”‘ denotes that this dataset is a supplementary experimental dataset of CMIP6-GMMIP, using 
the FGOALS-f3-L numerical simulation model of the Chinese Academy of Sciences. The “xxxx” represents the 
name of the experiment (e.g., amip), “Amon” indicates monthly data frequency, and “yyyy” represents the abbre-
viation of the variable name (referenced to Supplementary Table 1 for full names). For example, the data named 
“CMIP6_supplemental GMMIP CAS FGOALS-f3-L amip r1i1p1f1 Amon cl” contains the monthly mean cloud 
cover percentage (cl) from the amip experiment. Each monthly data file encompasses the period from January 
1979 to November 2021.

Technical Validation
In this section, the model’s basic performance is validated by comparing with the observational data, and the 
simulation results of the model will be evaluated across diverse time scales. It is mainly to compare the amip 
experiment with the observation data to verify the accuracy and reliability of the data set. The amip_NMO and 
amip_NS_MO will be basically described and not further analyzed.

The observational datasets used include the Climatic Research Unit gridded Time Series (CRU TS, openly 
available at https://www.uea.ac.uk/groups-and-centres/climatic-research-unit/data)44,45, a high-resolution 
global long-term climate dataset that developed and maintained by the Climatic Research Unit (CRU) at 
the University of East Anglia. This dataset is primarily based on meteorological observations from sta-
tions around the world. The data include various meteorological elements such as temperature, precipita-
tion, humidity, wind speed, cloud amount, etc. The precipitation data used in this study are from the Global 
Precipitation Climatology Project (GPCP, openly available at https://climatedataguide.ucar.edu/climate-data/
gpcp-monthly-global-precipitation-climatology-project)46,47 dataset, which is an international research project 
that provides a global precipitation dataset. In the scientific community, the GPCP Monthly Analysis (Version 
2.3) is widely used for analyzing regional and global precipitation changes and trends at climate scale. The 
study also used atmospheric circulation data from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis version 5 (ERA5, openly available at https://cds.climate.copernicus.eu/datasets)48 data-
set. The observational data used in this study are all monthly data from 1979 to 2021, and have been bilinearly 

Experiment_id Variant_label Output time Experimental design

amip r1i1p1f1 1979.1–2021.11

A reference experiment, the model integration starts from January 1, 1976. All external 
forcing factors, including greenhouse gases, solar irradiance, ozone and aerosols, are 
specified as their historical values. And the SST and sea-ice concentration prescribed 
as the observed values. Export data from January 1, 1979 to December 15, 2021 for 
analysis.

amip_NMO r1i1p1f1 1979.1–2021.11
The dynamical perturbation experiment, the height of the topography in the MP and 
its surrounding regions is modified. The topography above 500 m in the MP and its 
surrounding regions was set to 500 m.

amip_NS_MO r1i1p1f1 1979.1–2021.11 The thermal perturbation experiment, which removes the surface sensible heating over 
the MP and surrounding regions at altitudes above 500 m.

Table 1.  Experimental design.
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interpolated to a resolution of 1° × 1°, consistent with the model resolution, to facilitate analysis and comparison 
between observations and experimental results.

First, we show the two topography forcings for the simulation (Fig. 1). In the amip run, the terrain within 
the model remains unchanged, so the elevation height represents the actual height values. The maximum height 
is around 3000 m, mainly concentrated in the western regions of the MP (Fig. 1a). In the amip_NMO run, 
according to the experimental design, areas in the MP and its surrounding regions with terrain heights exceed-
ing 500 m are set to 500 m (Fig. 1b). The topography difference between the amip run and the amip_NMO run 
is shown in Fig. 1c. In the high-altitude areas of the MP, the differences are most pronounced, especially in the 
red regions depicted in the figure, where the height change exceeds 1800 m, whereas low-altitude areas (blue 
regions) exhibit relatively smaller changes in height.

In the no sensible heating run, the vertical heating transfer from the surface to the atmosphere at a height 
exceeding 500 m above the MP and its surrounding regions are set to zero. Figure 2 shows the climatological 
average (from January 1979 to November 2021) of the vertical diffusion heating from the surface (Temperature 
Vertical Diffusion, DTV) of the three experiments. In the amip experiment, neither the terrain nor the thermal 
parameters were modified, thus reflecting the actual topography of the MP and its global impact on the climate. 
From the distribution of DTV, it can be observed that significant differences in the MP at different altitude 
regions, indicating that its terrain height and thermal effects have an impact on the regional climate. There is 

Fig. 1  Topographic heights of the experiments (unit: m). (a) the control group experiment (amip), (b) the 
experiment of removing the MP (amip_NMO), and (c) the differences between amip experiment and amip_
NMO experiment (the thick red line is the region where the orography is removed).
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a pronounced cooling effect (blue regions) in the high-altitude areas of the MP, while lower altitude regions 
exhibit heating status (Fig. 2a).

In the amip_NMO run, the topography height of the MP was reduced. This implies that when the airflows 
pass over the MP, it is no longer affected by orographic lifting, and the uplifted thermal and dynamic distur-
bances are significantly weakened (Fig. 2b). Compared to the amip experiment, after removing the topography, 
the cooling effect in the MP is significantly weakened. Instead, there is a more uniform distribution of DTV. In 
the amip_NS_MO run, the topography of the MP was retained, yet the vertical heating from the surface to the 
atmosphere was removed. This setup simulates where the thermal influence of the MP on the atmosphere is 

Fig. 2  Climatological mean (1979–2021) of surface vertical diffusion heating of the experiments. (unit: K Day−1). 
(a) amip, (b) amip_NMO, and (c) the thermal perturbation experiment (amip_NS_MO) (the black contour 
represents topographic heights (unit: m) and the thick green contour is the experimental region).
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weakened. It is clearly evident that the DTV within the experimental region is zero (Fig. 2c), thereby confirming 
the correctness of our sensitivity experiments.

The two-meter air temperature (T2m) is one of the crucial evaluation metrics. Here, we show a spatial pat-
tern comparison between the T2m in the CRU TS dataset and the T2m output from the amip experiment. 
Figure 3 shows the basic spatial characteristics of the climatological mean (1979–2021) T2m. The distribution 
of T2m in both the observed dataset CRU TS (Fig. 3a) and the amip experiment (Fig. 3b) are generally similar. 
Both show a cold region in the north of the MP and a warm region in the south, indicating that the model has 

Fig. 3  Climatological mean of Two meters temperature (unit: °C). (a) CRU TS, (b) amip, and (c) the differences 
between amip and CRU TS (the black contour represents topographic heights (unit: m)).
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well simulated the basic pattern of T2m distribution. In some local regions, particularly in areas with complex 
terrain and high altitude, the simulation results may exhibit certain biases.

The difference of T2m between amip and CRU TS (Fig. 3c) shows a spatial discrepancy in the bias, particu-
larly over the MP and its adjacent regions. There are notable temperature biases and characteristic differences 
across different regions. Major cold biases are observed near the TP and southern regions of the MP, as well as 
mid-latitudes of the Asian continent around 40–50°N. Positive biases are observed on the northern side of the 
MP and at latitudes between 50–60°N in Asia. The model overestimates the extent of warm regions in Central 
Asia and northern China, while underestimating the cooling effect in the northern part of the MP. The cause 
of the cold bias in MP is similar as the cold bias in TP in the FGOALS-f3-L. Wu et al.49., found that the model 
underestimated the annual mean temperature of the TP, primarily attributable to the negative contribution 
of surface albedo feedback (SAF). An overestimation of the high albedo associated with snow or ice cover in 
high-altitude regions likely leads to reduced absorption of solar shortwave radiation at the surface, consequently 
lowering surface temperatures. Located within the central transition zone of the plateau, the MP region exhibits 
heightened sensitivity to surface albedo and shortwave radiation. In this area, the negative SAF contribution is 
not fully compensated by other energy budget components, resulting in the underestimation of 2m air temper-
atures near MP.

The dynamic and thermal forcing effects of the MP’s topography may change the paths and intensities of 
atmospheric circulation50, and further influence the transportation and convergence of water vapor51. Therefore, 
an evaluation of precipitation and 850 hPa wind simulation is also necessary. Observed precipitation data were 
sourced from the GPCP dataset, while 850 hPa wind were obtained from the ERA5 dataset. Here we show the 
climatological distribution characteristics of boreal summer (June-July-August, JJA) mean precipitation and 
850 hPa wind, as well as the climate mean responses of MP dynamical and thermal effects on the Asian Summer 
Monsoon in Fig. 4. Comparing the observational data (Fig. 4a) with the amip experimental results (Fig. 4b), 
the model demonstrates a good ability to simulate precipitation distribution characteristics, effectively repro-
ducing the fundamental patterns of precipitation in East Asia. The simulation of the 850 hPa wind also largely 
reproduces the features of the monsoon system, exhibiting a circulation pattern dominated by westerly winds 
that similar to those observed, as well as a relatively strong southwest monsoon flow along the East Asian coastal 
region. This monsoon flows to southeastern China and brings a large amount of water vapor, thereby enhancing 
precipitation.

While there are also some biases in the model. The precipitation in southern China, North China Plain 
and Korean Peninsula is lower than the observation, the location of the extreme precipitation area is slightly 
offset. Additionally, the extent of the southwest monsoon along the coastal regions is relatively limited. He et 
al.52, revealed that the FGOALS-f3-L model exhibits a systematic precipitation bias characterized by overesti-
mation over oceanic regions and underestimation over land. The causes can be summarized as the following 
mechanisms: an imbalance in water vapor transport arises from excessive horizontal water vapor advection and 

Fig. 4  Climatological JJA mean precipitation (shaded; unit: mm day−1), and 850 hPa wind of ERA5 (arrows; 
unit: m s−1). (a) GPCP, (b) amip, (c) amip_NMO, and (d) amip_NS_MO (the black contour represents 
topographic heights (unit: m)).
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underestimated vertical dynamic advection, leading to insufficient column-integrated water vapor convergence 
which thereby weakens monsoon precipitation53,54; deficiencies in cloud-radiation feedback occur, where low 
cloud cover over the monsoon trough region suppresses convective activity, ultimately reducing precipitation55; 
the uncertainty of cloud microphysical parameterization affects the spatial and temporal distribution of precipi-
tation, and the spatial resolution of 1° × 1°(improving the resolution can improve the accuracy) is still one of the 
reasons of simulation bias in amip run56..

In the amip_NMO experiment (Fig. 4c), it can be observed that there are significant reductions in precipita-
tion over northern MP and northern China. The region of heavy rainfall over the North China Plain has shifted 
southward. Changes in wind field are also evident, with the MP’s topography exerting a notable blocking and 
guiding effect on the westerly winds. This results in a weakening of the southwest monsoon flow, leading to 
reduced moisture transport into southeastern China, thereby affecting precipitation. These findings indicate that 
the orographic features of the MP significantly influence precipitation distribution by altering atmospheric cir-
culation pathways and intensities. In the amip_NS_MO experiment (Fig. 4d), precipitation is notably enhanced 
over northern MP, the East Asian coastal region. And the North China Plain, where a significant band of heavy 
rainfall forms. Furthermore, there is an increase in the intensity of the 850 hPa wind, particularly along the crit-
ical moisture transport pathways associated with the East Asian monsoon.

Here, we evaluate the accuracy of the model data based on the circulation situation and trough ridge situa-
tion in the Northern Hemisphere. Northern Hemisphere winter (December–January–February, DJF) 500 hPa 
geopotential height latitude anomaly and winds in Fig. 5. In the ERA5 (Fig. 5a) and amip experiment (Fig. 5b), it 
can be clearly observed that there is a clear “one trough and one ridge” situation in the Northeast Hemisphere, as 
well as the existence of a strong East Asian trough. It shows that the simulation ability of the model is excellent. 
There is an anticyclone in the south of the westerly jet stream belt in the middle latitudes of the western Pacific 
in eastern Asia. A large-scale circulation model dominated by the westerlies. The westerly belt is obvious in the 
mid-latitude region (40°N - 60°N), showing a relatively stable airflow, flowing along the trend of the geopotential 
height contour. However, there are some differences in the ridge strength and flow field details of the model in 
some areas. It is mainly reflected in the fact that the amip experiment underestimates the strength of the ridge in 
western North America and Europe, especially in the western region of Europe, which is slightly weaker.

layers (from bottom to top) a b

1 0 0.996115029

2 0.003162475 0.984234989

3 0.010152949 0.966544986

4 0.018579246 0.945169985

5 0.028675733 0.919475019

6 0.040713709 0.888715029

7 0.054981098 0.852069974

8 0.071763836 0.808664978

9 0.091316633 0.757634997

10 0.113815531 0.698194981

11 0.139284119 0.629764974

12 0.167481646 0.552150011

13 0.197736159 0.465815008

14 0.228660807 0.372370005

15 0.257687211 0.275545001

16 0.280738354 0.182115003

17 0.292708129 0.101044998

18 0.288511932 0.04095

19 0.263399184 0.008555

20 0.221711785 0

21 0.178474441 0

22 0.141757995 0

23 0.111005813 0

24 0.085623093 0

25 0.064995073 0

26 0.048505057 0

27 0.035527151 0

28 0.02537718 0

29 0.017353408 0

30 0.010987443 0

31 0.006093011 0

32 0.0025 0

Table 2.  Hybrid level coefficients of CAS FGOALS-f3-L atmospheric component.
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These results show that the model can better reproduced the basic pattern of the atmospheric circulation and 
could well capture the large-scale dynamics involved by orographical perturbations. These datasets will help 
to understand the contribution of the MP to the mid-high latitude monsoon circulation, winter cold wave and 
even extreme events, and also help to better understand the impact of Asian topography on the global monsoon 
system.

Usage Notes
The initial atmospheric model grid utilizes a cube-sphere grid system with a C96 resolution. Comprising 6 tiles, 
it exhibits irregularity in the horizontal plane. In compliance with the stipulations of CMIP6, we combine and 
interpolate these tiles onto the global latitude-longitude grid, attaining a nominal resolution of 1° for public 
accessibility via the first-order conservative interpolation technique.

For those users who are required to analysis the pressure layer datasets, we supply the hybrid level “A” coef-
ficient (a) and the hybrid level “B” coefficient at the mid-point level (b) in Table 2 for interpolation from model 
layers to pressure layers. Subsequently, the pressure can be obtained through the following formula:

= +P i j k A P B P i j( , , ) ( , ) (1)k k s0

Among them, P i j k( , , )  denotes the pressure required by the model, Ak corresponds to a, P0 is equal to 1000 
hPa, Bk is b, P i j( , )s  represents the surface pressure, i j k, ,  respectively stand for the longitude index, the latitude 
index and the vertical layer index.

Code availability
The code of bulking download daily and hourly data is available at https://github.com/xunuo-xx/MP-model-
dataset/blob/main/get_FGOALS_data.py. The codes of drawing figures in the article can be obtained from https://
github.com/xunuo-xx/MP-model-dataset.
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