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A Forcecardiography dataset with 
simultaneous SCG, Heart Sounds, 
ECG, and Respiratory signals
Salvatore Parlato1, Jessica Centracchio   1 ✉, Eliana Cinotti1, Maria Virginia Manzi2, 
Grazia Canciello2, Maria Prastaro2, Maria Lembo2, Benjamin M. Brandwood3, 
Gaetano D. Gargiulo   3, Paolo Bifulco1, Giovanni Esposito2, Raffaele Izzo2 &  
Emilio Andreozzi   1

FOSTER is the first ever publicly available dataset of forcecardiography (FCG) signals with simultaneous 
recordings of conventional seismocardiography (SCG), phonocardiography (PCG), electrocardiography 
(ECG), and respiratory signals. The dataset contains recordings from 40 participants (20 males and 20 
females) and aims to foster and facilitate research on non-invasive cardio-respiratory monitoring using 
mechanical sensors. All signals were acquired simultaneously to ensure precise temporal alignment 
for accurate analysis. Each recording lasts about 7 minutes and includes both long phases of quiet 
breathing and short phases of inspiratory and expiratory apneas. The open accessibility of the FOSTER 
dataset aims to facilitate advancements in unobtrusive cardio-respiratory patient monitoring, support 
the development of novel diagnostic tools and algorithms to detect specific events of the cardiac and 
respiratory cycles, and help researchers to explore the potential of combined electrical and mechanical 
cardiac monitoring.

Background & Summary
Non-invasive cardiomechanical monitoring techniques, such as Seismocardiography (SCG)1–4, 
Gyrocardiography (GCG)5,6, Phonocardiography (PCG)7–9, Ballistocardiography (BCG)10–16, provide valuable 
insights into the mechanics of the heart, offering a promising approach to ubiquitous cardiovascular assessment. 
These techniques record the mechanical vibrations and acoustic emissions generated by the heart contraction 
via small, lightweight mechanical sensors. SCG records the chest wall vibrations caused by the cardiac activity 
via MEMS accelerometers, which enables continuous cardiomechanical monitoring, also in wearable applica-
tions17,18. GCG measures cardiac-induced rotational movements of the chest surface via MEMS gyroscopes, 
which measure angular velocity and provide complementary data to SCG5,6. Accelerometers and gyroscopes 
combined in a single Inertial Measurement Unit (IMU) may offer a more detailed and accurate representation of 
heart mechanics and respiration providing an integrated SCG and GCG monitoring19–23.

Several datasets of SCG, GCG, and PCG signals are available, which generally include an ECG lead as refer-
ence. Some datasets include data from healthy subjects: the dataset presented by Kaisti et al.24 contains simulta-
neous 3D accelerometer and gyroscope recordings; the CEBS dataset25–27 provides long-term SCG recordings; 
the multichannel seismocardiography dataset28,29 contains simultaneous recordings from a matrix of accelerom-
eters placed onto the thorax; the SensSmartTech dataset30 provides simultaneous ECG, PCG, PPG, and accel-
erometer recordings. Other datasets include data from pathological subjects: the dataset presented by Yang and 
Tavassolian31,32 and the SCG-RHC dataset27,33,34 provide signals from patients with valvular heart disease and 
heart failure, respectively. Additionally, several heart sound datasets27,35,36 provide simultaneous PCG and ECG 
recordings. Table 1 summarizes the main characteristics of these datasets of cardiomechanical signals, high-
lighting the number of subjects included, their health status, the type of signals recorded, and some limitations.

These datasets show inherent limitations. The vibrations and sounds generated by the heartbeat cover a rather 
wide frequency band ranging from the slow chest movements that can be felt by palpation at each heartbeat 
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(from 0.5 Hz), up to the heart sounds (hundreds of Hz). The amplitude and morphology of vibrations and heart 
sounds are continuously modulated by respiration. Accelerometers can capture with good signal-to-noise ratio 
only inaudible vibrations in a frequency band ranging from 7 to 30 Hz. Lower frequencies are usually filtered 
out because they are associated with extremely low accelerations; higher frequencies (i.e., audio frequencies) 
generate much higher accelerations that are conventionally removed with built-in low-pass filters. Variations in 
the components of static gravitational acceleration can be used to monitor chest expansions due to respiration. 
Gyroscopes exhibit similar limitations, while stethoscope microphones capture only heart sounds (frequencies 
from 20–30 Hz to thousands of Hz).

The recent FCG technique37–41 uses a single force sensor to acquire simultaneous measurements of chest 
oscillations, vibrations, and sounds, covering a wide frequency range from tenths to hundreds of Hz. Simple 
filtering operations can be used to decompose the raw FCG signal in several components related to the chest 
expansions and contractions due to respiration, the slow oscillations produced by heart walls displacements, 
the subsonic vibrations due to heart valves activity (very similar to SCG and GCG), and the heart sounds (as 
captured by stethoscopes). FCG allows prolonged and continuous monitoring of both cardiac and respiratory 
mechanical activity using a single lightweight sensor that can be embedded in clothes and apparels, thus ena-
bling pervasive monitoring applications. To date, there is no public database of FCG signals.

FOSTER is the first ever dataset of FCG signals. It contains also SCG, PCG, ECG, and respiration signals, 
which were recorded simultaneously to FCG signals from each subject. The FOSTER dataset offers a unique and 
unprecedented resource for researchers, enabling in-depth exploration of cardiac mechanics, performance com-
parison of different cardiomechanical techniques for diagnostic purposes, assessment of cardiac and respiratory 
parameters against reference ECG and respiratory signals.

Methods
Participants.  The dataset population consists of 40 healthy subjects (20 males and 20 females), aged 
26.93 ± 7.09 years. The age distribution is depicted in Fig. 1. Data were collected at the Hypertension Centre of 
AOU Federico II (80131, Naples, Italy) between July 2024 and March 2025. The study was carried out in accord-
ance with the Declaration of Helsinki and approved by the Ethical Committee “Università Federico II - AORN A. 
Cardarelli” (prot. nr. 0015104, date: 28 March 2023). Informed consent was obtained from all subjects involved 
in the study. Personal data have been anonymized to ensure the non-traceability of individuals involved. Age and 
gender data were maintained. The participants consented to the use of their anonymized data for clinical studies 
and for sharing and publication in scientific articles.

Signals recording.  Each subject sat comfortably in a chair and was invited to place his or her back against 
the backrest and the forearms on the armrests and to remain relaxed. The placement of the sensors used to acquire 
the physiological signals is schematized in Fig. 2. The FCG signal was acquired by a pair of piezoelectric sensors 
placed on top of each other, specifically a lead-zirconate-titanate (PZT) sensor and a polyvinylidene fluoride 
(PVDF) sensor, as described in a previous study41.

An ADXL335 accelerometer (Analog Devices, inc.) was stacked on top of the two piezoelectric sensors struc-
ture, in order to record the SCG signal from the same site on the chest: details of this arrangement can be found 
in a previous study41. Only the dorsoventral component of the acceleration was recorded since it is the most 
widely used for seismocardiography. The FCG-SCG sensors assembly was positioned on the fourth intercostal 
space between the sternal line and the mid-clavicular line, identifying the point of maximal signal amplitude 
for each subject (see Fig. 2). An Aethra Telestethphone electronic stethoscope, featuring Littmann chestpiece 
and tubing, was used to record heart sounds. The stethoscope chestpiece was placed as close as possible to the 

Dataset Subjects Male Female Signals Limitations

CEBS25 Healthy 12 8 ECG, SCG, respiration
Unbalanced gender distribution
Small sample size
No heart sound data

Mechanocardiograms with ECG reference24 Healthy 29 0 ECG, SCG, GCG Only male participants
No heart sound and respiration

Multichannel Seismo-cardiography28 Healthy 13 0 ECG, SCG, respiration
Small sample size, only males
No heart sound data
Bulky instrumentation

SensSmartTech30 Healthy 14 18 ECG, SCG, PCG, PPG Short duration of the recording
No respiration data

Cardio-mechanical Signals from Patients with 
Valvular Heart Diseases32 Pathological 59 41 ECG, SCG, GCG Unbalanced gender distribution

No heart sound and respiration

SCG-RHC33 Pathological 49 24 ECG, SCG Unbalanced gender distribution
No heart sound and respiration

EPHNOGRAM35 Healthy 24 0 ECG, PCG Small sample size, only males
No heart sound and respiration

Radar-Recorded Heart Sounds36 Healthy 7 4 ECG, PCG
Unbalanced gender distribution
Small sample size
No heart sound and respiration

Table 1.  Summary of various datasets used in cardiovascular research, highlighting participant demographics, 
signals included, and major limitations.
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FCG sensor (see Fig. 2). These sensors were attached to the subject’s chest via an elastic belt wrapped around the 
chest. The reference ECG lead II was acquired using a WelchAllyn Propaq® Encore monitor (Welch Allyn Inc., 
New York, NY, USA). The reference respiratory signal was captured via an electro-resistive band (ERB)42 placed 
around the subject’s abdomen as showed in Fig. 2.

All signals were synchronously recorded via a National Instrument NI-USB6212 DAQ board (National 
Instruments Corp., Austin, TX, USA) with a sampling frequency of 10 kHz and 16-bit precision for approxi-
mately 7 minutes. The frequency content of the acquired signals, which included the heart sounds, is less than 
1 kHz. The 10 kHz sampling rate ensured a very fine time resolution in order to allow accurate cardiac time inter-
vals measurements. Each subject was asked to alternate phases of quite breathing and apneas. The first 5 minutes 
of the recording involved calm, spontaneous breathing. Then, participants were asked to perform an inspiratory 
apnea, followed by a short breathing period, and finally an expiratory apnea. Figure 3a shows an excerpt of all 
signals recorded, where phases of quiet breathing and apnea are clearly visible. Figure 3b, on the other hand, 
shows an excerpt of each signal during quiet breathing on a different timescale, where individual heartbeat and 
respiration acts are clearly recognizable.

Data Records
The FOSTER dataset is available at an Open Science Framework repository43 https://osf.io/3u6yb/. The dataset is 
structured to facilitate analysis and usability of the data. A single comma separated values (CSV) file is provided 
for each subject, named “sub0xx”, where xx represents the numbering associated with each subject. Each CSV 
file consists of seven fields, described in Table 2. The demographic information, including age, sex, and to be 
smoker, is collected in a separate file. To support researchers in accessing and analyzing data, MATLAB® code 
is also provided.

Technical Validation
Technical validation of the dataset was performed by first assessing the quality of the data via the estimation of 
signal-to-noise ratio (SNR) and by evaluating the error associated with the estimation of key vital signs, such as 
the instantaneous heart rate and respiratory rate. This analysis provides evidence of signals quality and consist-
ency with respect to the reference signals. MATLAB® R2023b (The MathWorks, Inc., 1 Apple Hill Drive, Natick, 
Massachusetts, 01760, United States) was used for all signal processing and analysis procedures.

SNR estimation.  The Signal-to-Noise Ratio (SNR) was estimated in the frequency domain using power 
spectral density (PSD) analysis44. SNR was calculated by assuming that the noise floor of the signals is white 
noise, which is characterized by a constant PSD across frequencies. PSD of combined signal and noise (PSDSN) 

Fig. 1  Age distribution of the FOSTER dataset population.

Fig. 2  Measurement setup used in data acquisition of the FOSTER dataset.
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was computed by squaring the amplitude spectrum of the Fourier Transform. The total power of combined signal 
and noise (PSN) was obtained by summing all PSDSN values. The signals were sampled at 10 kHz. The frequency 
band between 1 kHz to 5 kHz, was assumed to contain only noise with no signal activity and was selected to quan-
tify the withe noise intensity (see Fig. 4). The noise power in [1–5] kHz (PN [1–5] kHz) was obtained by summing 
all PSDN values in that frequency band. To estimate the PSD of the noise (PSDNest), PN [1–5] kHz was divided by the 
noise bandwidth. This gave an estimate of the noise’s spectral density within the noise-only frequency range. Once 

Fig. 3  An excerpt of signals acquired from subject #018. The six recorded signals represented from top to 
bottom are: ECG (blue); FCGPZT (red); FCGPVDF (orange); SCG (violet); Respiration (green); PCG (grey).  
(a) a 200-seconds segment including quiet breathing and apnea phases; the graph area with green background 
corresponds to the inspiratory apnea, while the graph area with red background corresponds to the expiratory 
apnea; (b) a 14-seconds segment including 20 heartbeats and 4 respiratory cycles during quiet breathing.
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the PSDNest was obtained, it was multiplied by the total frequency range (which is half of the sampling frequency, 
fs/2) to obtain the total noise power (PNtot). This extended the noise power estimate across the entire frequency 
spectrum. To compute the signal power, PNtot was subtracted from (PSN), yielding the total signal power PStot. 
Finally, the SNR expressed in dB was calculated by the following expression:

·SNR
P
P

10 log
(1)

Stot

Ntot
10=







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To ensure that the noise floor can be considered white noise, the slope of PSDN [1–5] kHz range was computed. 
Additionally, the standard deviation of the PSDN [1–5] kHz was calculated to assess the variability of the spectrum 
in the selected range. The SNR values and PSDN [1–5] kHz slopes were computed separately for each signal type in 
the database for each subject. Finally, the mean and standard deviation (SD) of all SNR values for each signal 
type were calculated for each subject. The same statistical analysis was performed for the PSDN [1–5] kHz slope 
values.

FCG components extraction.  The raw FCG signal consists of a large, dominant respiratory component 
(also named Force-RespiroGram - FRG) and much smaller cardiac components superimposed. To extract the 
cardiac FCG components, it is first necessary to separate the large FRG component from the smaller cardiac 
component of the FCG signal. A 21st-order Savitzky-Golay filter45 with a frame length between 8 and 18 seconds 
was used for the extraction of the FRG. Then, the FRG was subtracted from the raw FCG signal to isolate the 

File name Column Content

sub0xx.csv

1 Time [s]

2 ECG signal

3 FCG raw signal from PVDF 
sensor

4 FCG raw signal from PZT 
sensor

5 SCG signal

6 PCG signal

7 Respiration signal from ERB

Table 2.  Description of the data structure in the CSV files. Each file (sub0xx.csv) contains multiple columns, 
where each column corresponds to a specific recorded signal. The first column represents the sampling times 
reported in seconds, while the remaining columns store the physiological signals acquired from the different 
sensors, including ECG, PVDF, PZT, SCG, PCG, and ERB.

Fig. 4  Amplitude spectrum of ECG signal of subject #006. The shaded region (1–5 kHz) represents the 
frequency band used to estimate the power spectral density (PSD) of the noise. This range is assumed to contain 
only noise components, ensuring a reliable estimation of the noise floor.
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cardiac components, which were further separated via band-pass filtering. In particular, the LF-FCG component 
was obtained by filtering in the 0.5–6 Hz band, the HF-FCG component by filtering in the 7–30 Hz band, and the 
HS-FCG component (i.e. the heart sounds) by filtering in the 30–300 Hz band. The first derivative of the HF-FCG 
(dHF-FCG) component was also computed, since it had previously been found to be highly similar to the SCG 
signal39. As an example, Fig. 5 illustrates the FCG signal components extracted from the raw FCG signals acquired 
by PZT and PVDF sensors, along with the ECG signals. While HF-FCG and HS-FCG are related to valves activi-
ties, the LF-FCG is related to the filling and emptying of the heart chambers during the cardiac cycle.

Physiological parameters estimation.  Common applications include estimating heart rate and 
respiratory rate. FCG signals captured by PVDF and PZT sensors were analyzed and compared with the 

Fig. 5  Excerpt of cardiac components extracted from FCG raw signals, with FRG, and ECG signals from 
subject #018: (a) PVDF sensor signals; (b) PZT sensor signals.

https://doi.org/10.1038/s41597-025-05694-2
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reference ECG and respiratory signals. In particular, inter-beat and inter-breath intervals were estimated 
by FCG signals and then compared with those provided by reference ECG and ERB signals, to demon-
strate data quality and the reliability of cardio-respiratory monitoring and analysis. The analyses involved 
the quiet breathing phases. Heartbeats were detected from ECG signals via the well-known Pan-Tompkins 
algorithm46. Heartbeats from dHF-FCG and HS-SCG signals were detected via a fully automatic template 
matching approach40,47–51. After heartbeats localization, correct heartbeat detections (true positives, TPs), 
false heartbeat detections (false positives, FPs) and missed heartbeats (false negatives, FNs) were annotated 
with the support of the reference ECG signals. Inter-beat intervals (IBIs) were then estimated as the time 
difference between consecutive heartbeats and compared with those provided by the reference ECG signal. 
Similarly, respiratory acts were identified in the FRG components (extracted from FCG raw signals) via 
the MATLAB® function findpeaks. TPs, FPs and FNs were annotated with the support of the reference 
ERB signals. The inter-breath intervals (IBrIs) were estimated as the time difference between consecutive 
respiratory acts and then compared with those obtained from the ERB signal. Regression correlation and 
Bland-Altman analysis52,53, implemented in the MATLAB® function bland–altman-and-correlation-plot54, 
were used to compare the IBIs and IBrIs estimated by FCG signals to those provided by reference ECG and 
ERB signals. Finally, the histograms of errors on IBIs and IBrIs estimates obtained from the reference sig-
nals and FCG signals were calculated. To ensure accuracy, inter-beat and inter-breath intervals corrupted 
by FPs and FNs were excluded from the analyses. Additionally, sensitivity and positive predictive value 
(PPV) were used as metrics to assess the performance of the algorithms used for heart-beat and respiratory  
acts detection.

N Parameters

Signals

ECG FCGPVDF FCGPZT SCG PCG ERB

40

SNR [dB]
mean 81.52 70.27 73.02 83.73 31.35 75.35

SD 1.25 7.20 6.19 0.53 6.47 5.02

SLOPEPSD [dB/Hz]
mean −0.00002 −0.00011 −0.00054 −0.00002 −0.00037 0.00053

SD 0.000068 0.000189 0.00056 0.000002 0.000270 0.001952

Table 3.  Summary of the SNR and PSDN slope for each signal type in the dataset. PSD is evaluated in the noise-
only frequency range.

Signal Components Reference heartbeats TPs FPs FNs Sensitivity (%) PPV (%)

FCG

dHF-FCGPVDF 17104 16018 459 1086 94.0 97.0

dHF-FCGPZT 17104 15847 451 1257 92.6 97.2

HS-FCGPVDF 17104 13214 2254 3890 77.3 85.4

HS-FCGPZT 17104 13090 1526 4014 76.5 89.6

Table 4.  The overall results of statistical analysis in heartbeat detection for FCG signal components across all 
subjects.

Signal Components NIBIs R2 Slope CIslope Intercept (ms) CIintercept(ms)

FCG

dHF-FCGPVDF 15245 >0.99 1.001 [1.001; 1.001] −0.648 [−0.927; −0.369]

dHF-FCGPZT 14979 >0.99 1.002 [1.001; 1.002] −1.219 [−1.527; −0.912]

HS-FCGPVDF 11083 >0.99 1.001 [1.001; 1.002] −0.933 [−1.223; −0.643]

HS-FCGPZT 11021 >0.99 1.002 [1.001; 1.002] −1.307 [−1.649; −0.965]

Table 5.  The overall results of linear regression and correlation analyses on inter-beat intervals estimation 
obtained from ECG signal and FCG signal components across all subjects.

Signal Components NIBIs bias (ms) CIbias(ms) LoA (ms) CILoA min(ms) CILoA max(ms)

FCG

dHF-FCGPVDF 15245 0.00 [0.00; 0.100] [−5.500; 5.100] [−5.600; −5.300] [5.000; 5.300]

dHF-FCGPZT 14979 0.00 [0.00; 0.100] [−6.000; 5.803] [−6.200; −5.700] [5.600; 6.100]

HS-FCGPVDF 11083 0.00 [−0.100; 0.00] [−4.500; 4.600] [−4.700; −4.363] [4.400; 4.800]

HS-FCGPZT 11021 0.10 [0.00; 0.100] [−5.300; 4.800] [−5.600; −5.100] [4.530; 5.130]

Table 6.  The overall results of Bland-Altman analysis on inter-beat intervals estimation obtained from ECG 
signal and FCG signal components across all subjects. Since the inter-beat intervals measurement differences 
were distributed with a non-normal distribution, the bias was estimated as the median of differences and the 
limits of agreement as the 2.5th and 97.5th percentiles, respectively.

https://doi.org/10.1038/s41597-025-05694-2
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Performance assessment.  SNR results.  The mean SNR of the ECG signal across all subjects is 
81.52 ± 1.25 dB, while the mean and standard deviation of the PSDN slope in the noise-only frequency range are 
close to zero. FCG signals present an average SNR of more than 70 dB, with a standard deviation of less than 8 dB, 
and their PSDN slope also presents a mean and standard deviation close to zero. SCG signals present an average 
SNR of 83.73 ± 0.53 dB, with the PSDN slope maintaining values close to zero. For the respiratory signal (ERB), 
the mean SNR is 75.35 ± 5.02 dB, while both the mean and standard deviation of the PSDN slope remain close 
to zero. A slightly lower, but still remarkable SNR is observed for PCG signals, which have an average SNR of 
31.35 ± 6.4 dB, while the mean and standard deviation of the PSDN slope remain close to zero. Table 3 summa-
rizes the mean and standard deviation of the SNR and PSDN slope values for each signal across all subjects in the 
dataset. The results achieved indicate that the PSDN remains flat in the noise-only frequency band for all signals, 
suggesting that the noise is indeed white. This confirms that the SNR estimate is reliable.

Results of physiological parameters estimation: heart monitoring.  Table 4 shows the number of heartbeats accu-
rately identified (TP) on all subjects from FCG cardiac components, as well as the number of FPs, FNs. Table 4 
also reports sensitivity and PPV values. Specifically, 16018 and 15847 heartbeats were correctly identified, 

Fig. 6  Statistical analyses on the inter-beat intervals (IBIs) obtained from dHF-FCG signals (extracted from 
the PVDF and PZT sensor signal) and reference ECG signals: (a) results of regression and correlation analysis 
achieved from dHF-FCGPVDF signal; (b) results of Bland–Altman analysis achieved from dHF-FCGPVDF signal; 
(c) results of regression and correlation analysis achieved from dHF-FCGPZT signal; (d) results of Bland–Altman 
analysis achieved from dHF-FCGPZT signal.

https://doi.org/10.1038/s41597-025-05694-2
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respectively, in dHF-FCGPVDF and dHF-FCGPZT signals, out of a total of 17104 reference heartbeats. A sensitivity 
and PPV of 94% and 97%, and of 93% and 97% were achieved, respectively, for dHF-FCGPVDF and dHF-FCGPZT 
signals. HS-FCGPVDF and HS-FCGPZT signals achieved a sensitivity and PPV of 77% and 85%, and of 77% and 
90%, respectively. In fact, 13214 and 13090 heartbeats were correctly identified, respectively, in HS-FCGPVDF 
and HS-FCGPZT signals, out of a total of 17104 reference heartbeats. The overall results of the linear regres-
sion, correlation and Bland-Altman analysis are summarized in Tables 5, 6, as well as the confidence intervals 
(CIs) of the statistical parameters. Statistical analyses, performed on 15245 and 14979 IBIs estimated from both 
dHF-FCGPVDF and dHF-FCGPZT signals and ECG, showed a coefficient of determination (R²) greater than 0.99, 
with unit slopes for both signals. The intercepts were −0.6 ms for dHF-FCGPVDF and −1.2 ms for dHF-FCGPZT 
(see Fig. 6a,c). Bland-Altman analysis showed a nonsignificant bias with a confidence interval (CIbias) of [0.00; 
0.100] ms for both dHF-FCG signals. Limits of agreement (LoA) ranged from −5.5 to 5.1 ms for dHF-FCGPVDF 
and from −6.0 to 5.8 ms for dHF-FCGPZT, suggesting slightly higher variability for the second one (see Fig. 6b,d). 
Similarly, 11083 IBIs obtained from HS-FCGPVDF and 11021 from HS-FCGPZT signals were compared with those 
provided by the reference ECG. The linear regression results indicated an R² greater than 0.99 for both audible 
components, with slopes of 1.0 for HS-FCGPVDF and 1.0 for HS-FCGPZT. The intercepts were slightly larger com-
pared to dHF-FCG signals, with values of −0.9 ms for HS-FCGPVDF and −1.3 ms for HS-FCGPZT, as shown in 
Fig. 7a,c. The Bland-Altman analysis showed a nonsignificant bias for both HS-FCG signal with CIbias of [−0.1; 

Fig. 7  Statistical analyses on the inter-beat intervals (IBIs) obtained from HS-FCG signals (extracted from 
the PVDF and PZT sensor signal) and reference ECG signals: (a) results of regression and correlation analysis 
achieved from HS-FCGPVDF signal; (b) results of Bland–Altman analysis achieved from HS-FCGPVDF signal; 
(c) results of regression and correlation analysis achieved from HS-FCGPZT signal; (d) results of Bland–Altman 
analysis achieved from HS-FCGPZT signal.
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0.1] ms for HS-FCGPVDF and [0.0; 0.1] ms for HS-FCGPZT. The limits of agreement ranged from −4.5 to 4.6 ms 
for HS-FCGPVDF and from −5.3 to 4.8 ms for HS-FCGPZT (see Fig. 7b,d), suggesting that the HS-FCG signals 
exhibited slightly lower variability than dHF-FCG signals.

Figure 8 shows the histograms of the errors on the IBIs estimates between the reference ECG signal and 
the FCG signal components. The histograms of errors exhibit a gaussian distribution centered around zero, 
indicating that the measurement errors are symmetrically distributed with no significant bias. This suggests 
that the estimated values are, on average, very close to the reference values, with errors randomly distributed 
around zero. These results demonstrate the reliability of the recorded FCG data for heartrate monitoring 
applications.

Results of physiological parameters estimation: respiration monitoring.  Table 7 shows the number of respiratory 
acts accurately identified (TPs) on all subjects by FCG respiratory components (FRG) provided by PVDF and 
PZT sensors, as well as the number of FPs and FNs. Sensitivity and PPV values are also reported in Table 7. 
Overall, out of a total of 3472 reference respiratory acts provided by the ERB signal, 3299 were accurately 
detected from the FRGPVDF signals and 3244 from the FRGPZT signals. Sensitivity and PPV were 95% and 92.4% 
for FRGPVDF signals, and 93.4% and 92.6% for FRGPZT signals. The overall results of the linear regression, corre-
lation, and Bland-Altman analysis were outlined in Tables 8, 9. For the FRGPVDF component, the results of the 
linear regression and correlation analysis performed on 3128 IBrIs show strong agreement with the reference 
ERB signal. The coefficient of determination (R²) was 0.964 and the slope was close to unity (0.994), indicating 
an almost perfect proportional relationship. The intercept was minimal (0.017 s), with a confidence interval 
ranging from −0.008 to 0.042 s (see Fig. 9a). Bland-Altman analysis further supports these results, with a non-
significant bias with CIbias of [−0.0082; 0.0017] s. The limits of agreement (LoA) ranged from −0.505 to 0.504 s 
(see Fig. 9b).

For the FRGPZT component, the agreement with the reference ERB signal remained strong, although slightly 
lower than FRGPVDF. As shown in the Fig. 10a the R² value was 0.958, with a slope of 0.988, still close to unity 
and an intercept of 0.041 s. Bland-Altman analysis revealed a nonsignificant bias, with CIbias of [−0.0079; 0.0022] 
s. The limits of agreement (LoA) ranged from −0.550 to 0.557 s (see Fig. 10b). Furthermore, the analysis of 
the error distributions across the histograms revealed that the errors followed a gaussian distribution centered 
around zero for both respiratory components, FRGPVDF and FRGPZT (see Fig. 11). This further supports the 
reliability of the measurements, as it suggests that the estimation errors are unbiased and not due to systematic 
deviations. These results also demonstrate the reliability of the recorded FCG data for respiratory monitoring 
applications.

Fig. 8  Histograms of the errors on the IBI estimates between the reference ECG signal and the FCG signal 
components: (a) histogram of errors on IBIs between ECG and dHF-FCGPVDF; (b) histogram of errors on IBIs 
between ECG and dHF-FCGPZT; (c) histogram of errors on IBIs between ECG and HS-FCGPVDF; (d) histogram 
of errors on IBIs between ECG and HS-FCGPZT.
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Usage Notes
This dataset, which comprises various physiological signals including electrocardiograms (ECG), 
Forcecardiograms (FCG), Seismocardiograms (SCG), Phonocardiograms (PCG), and respiratory signals, offers 
vast potential in a wide range of clinical and research applications. The inclusion of the FCG signal is par-
ticularly noteworthy, as it inherently incorporates information provided by all other mechanical signals in the 
dataset. This makes FCG exceptionally helpful for comprehensive cardio-respiratory analysis. By leveraging 
FCG signals, it is possible to assess key cardiac parameters with high accuracy. For example, using automated 
algorithms, cardiac time intervals, such as pre-ejection period (PEP), can be estimated with remarkable accu-
racy39. Additionally, FCG-based algorithms can precisely localize heart sounds, which are essential for accurate 
diagnosis and monitoring of heart conditions40. The dataset also enables the extraction of short-term indices of 
heart rate variability (HRV), a key metric in cardiovascular health assessment50,55. Moreover, the combination 
of respiratory and cardiac signals can be very useful for monitoring and diagnosing various cardiorespiratory 
conditions, such as sleep apnea, heart failure, and arrhythmias. Respiratory signals can be integrated with other 
cardiovascular data to provide a more holistic view of an individual’s health status, improving both diagnostics 
and treatment protocols. Beyond clinical monitoring, this dataset also holds significant potential for the devel-
opment and testing of artificial intelligence models that can automate cardio-respiratory analyses. Its versatility 

Signal Components Reference acts TPs FPs FNs Sensitivity (%) PPV (%)

FCG
FRGPVDF 3472 3299 273 173 95.0 92.4

FRGPZT 3472 3244 259 228 93.4 92.6

Table 7.  The overall results of statistical analysis in respiratory acts detection for respiratory components of 
FCG signals across all subjects.

Signal Components NIBrIs R2 Slope CIslope Intercept (s) CIintercept(s)

FCG
FRGPVDF 3128 0.964 0.994 [0.988; 1.001] 0.017 [−0.008; 0.042]

FRGPZT 3075 0.958 0.988 [0.981; 0.995] 0.041 [0.013; 0.069]

Table 8.  The overall results of linear regression and correlation analyses on inter-breath intervals estimations 
obtained from ERB signal and FCG respiratory components across all subjects.

Signal Components NIBrIs bias (s) CIbias(s) LoA (s) CILoA min(s) CILoA max(s)

FCG
FRGPVDF 3128 −0.003 [−0.0082; 0.0017] [−0.505; 0.504] [−0.564; −0.456] [0.467; 0.590]

FRGPZT 3075 −0.003 [−0.0079; 0.0022] [−0.550; 0.557] [−0.608; −0.496] [0.490; 0.633]

Table 9.  The overall results of Bland-Altman analysis on inter-breath intervals estimation obtained from 
ERB signal and FCG respiratory components across all subjects. Since the inter-breath intervals measurement 
differences were distributed with a non-normal distribution, the bias was estimated as the median of differences 
and the limits of agreement as the 2.5th and 97.5th percentiles, respectively.

Fig. 9  Statistical analyses on the inter-breath intervals (IBrIs) obtained from ERB and FRGPVDF signals:  
(a) results of regression and correlation analyses; (b) results of Bland–Altman analysis.
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spans from cardiorespiratory monitoring to the development and testing of advanced artificial intelligence algo-
rithms aimed at improving diagnostic accuracy and clinical decision-making. In conclusion, the FOSTER data-
set offers a wealth of opportunities across various fields, including personalized medicine, clinical diagnostics, 
medical device development, and AI-driven health solutions. Its comprehensive nature makes it an invaluable 
resource for advancing both fundamental research and applied technologies in the realm of cardio-respiratory 
health monitoring.

This dataset can be easily imported into both MATLAB® and Python, making it accessible for data analysis 
and signal processing. To support preprocessing of the data, a MATLAB® code is also provided to extract and 
analyze all signals contained in the FOSTER dataset.

Code availability
The custom code used to access and analyze this dataset is available at an Open Science Framework repository 
https://osf.io/bd2gy/.
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