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Breast cancer presents the second largest cancer risk in the world to women. Early detection of 
cancer has been shown to be effective in reducing mortality. Population screening programs schedule 
regular mammography imaging for participants, promoting early detection. Currently, such screening 
programs require manual reading. False-positive errors in the reading process unnecessarily leads to 
costly follow-up and patient anxiety. Automated methods promise to provide more efficient, consistent 
and effective reading. To facilitate their development, a number of datasets have been created. 
Such datasets can aid in learning-based development but many are not publicly available and do not 
draw directly from population screening programs. With the aim of specifically targeting population 
screening programs, we introduce NL-Breast-Screening, a dataset from a Canadian provincial screening 
program. The dataset consists of 5997 mammography exams, each of which has four standard views 
and is biopsy-confirmed. Cases where radiologists’ reading was a false-positive are identified. NL-
Breast-Screening is made publicly available as a new resource to promote advances in automation for 
population screening programs.

Background & Summary
Breast cancer prevalence increases with age and health authorities recommend that women over 40 (or 50 in 
some jurisdictions) receive an X-ray mammogram every two years. As a result, in Canada and the USA, about 
40 million exams are performed each year. Of these, two million exams (5%) are deemed suspicious by the 
radiologist and referred for additional procedures. However, only 270,000 cases of breast cancer are reported 
each year. Assuming that all these cases are represented in the mammograms, the disease incidence in the mam-
mograms is no greater than 0.7% (270k/40M). Ironically, although it appears that there is a marked tendency 
to over-diagnose, screening programs still miss up to 20% of the resident disease1. Attempts to mitigate errors 
include double reading and Computer Aided Detection (CAD) assistance. These efforts improved accuracy 
but increased cost; they did not succeed in eliminating the false negative and false positive cases. In response 
to this diagnostic challenge, many research groups applied Artificial Intelligence (AI) schemes to the problem 
of breast cancer detection in mammography2. The results, while promising, have not eclipsed those of existing 
programs3,4.

Since the onset of screening programs in the 1980’s there have been many technological developments. The 
first was optimization of x-ray beam quality through the use of appropriate anode material and aperture filters. 
During this period film technology received a great deal of attention, very fine structured films provided supe-
rior spatial resolution at the cost of a small dose increase. Film was supplanted by indirect technology, which 
in turn was supplanted by digital technology. Digital technology brought an opportunity to standardize data 
formats. Mammograms are now stored using the medical-standard DICOM image format5. This format is infor-
mation rich in that it includes details of equipment settings and of automated data processing routines. Detector 
development continues to deliver ever higher resolution and ever more sensitive detectors. In addition, line 
source x-ray generators promise to reduce scatter and lower dose. To assist with the challenge of overlying tissue, 
panoramic cameras are now used to help with depth perception and increase conspicuity. There are now thou-
sands of terabytes of mammography data, representing just about every variation of normal and pathological 
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breast anatomy. This has proven to be an attractive resource for software engineers, who have produced a steady 
stream of “computer aided diagnostic” (CAD) applications to assist in identifying markers of disease.

Early offerings used intensity measures to identify bright clusters in mammograms6. When present, these 
represent calcifications that, in certain configurations, are associated with carcinoma development. However, 
not all cancer containing breasts feature calcifications7,8. So, the next focus was on identifying masses. These 
were detectable as discrete, anomalous areas of intermediate brightness. They represent a large class of breast 
cancer known as ductal carcinoma in situ9. Other cancers have a more complex structure, often with tendrils 
or diffuse edges that extend into seemingly normal tissue9. These were more difficult to detect using software 
algorithms, but were an important entity since they represent a second class of breast tumour known as invasive 
ductal carcinoma10. There are even more challenging cases. When the native breast tissue is fibrous, the contrast 
between normal and cancer tissues, already very subtle, is reduced10. Younger women tend to have these type 
of breasts; the detection efficiency is reduced for this age group meaning that some programs do not include 
women under fifty years of age10.

As the algorithms have grown in complexity it has been more difficult to realize diagnostic gains in breast 
cancer screening programs. In addition, it is important not to increase the resource demands on this already 
expensive program11. Early studies determined that the use of CAD reduced the overall efficiency of a screening 
program as the radiologist was faced with many false positive findings that had to be cleared12–15. Subsequent 
studies have provided a mixed bag of results. In the early studies, the performance of the expert screeners did not 
improve with the use of CAD, whereas that of the less experienced mammographers improved. Recent studies 
have shown that AI can perform at least as well as the traditional radiologist based double reading16. However, 
the AI objective is different from that of CAD. With AI, the aim is to replace the traditional reader with the AI 
reader. In contrast, CAD attempted to aid with detection. Where CAD highlighted suspicious items in an image, 
AI classifies the image as normal or not. Where CAD uses transparent mechanisms such as edge- or brightness 
detection, AI, particularly deep-learning AI, uses pattern comparisons for classification. CAD continues to be 
included on new mammography and tomosynthesis equipment. However, with the advent of AI, particularly 
the convolutional neural network configurations, researchers have focused on improving program performance 
by replacing all or some of the radiologist function16–20. These studies showed promising results, but there have 
been reservations expressed regarding the deployment of AI in breast screening19,21.

Generally in software development early applications develop quickly but have a narrow range of utility. As 
the scope of the undertaking increases, so does the number of potential failure points. In very complex situa-
tions, such as differentiating tumour grade, there is an exponential increase in the number of potential failure 
points and a corresponding increase in the time required to resolve them. A second barrier to development is the 
requirement that software which is used in diagnosis must be approved by the cognate national authority. This 
authorization requires extensive independent testing, and that has highlighted another problem: the shortage of 
high quality testing datasets.

Review of Existing Datasets
Previously, it was noted that a great deal of development was done using two legacy mammographic datasets, 
the MIAS and DDSM22. There are now several others (reviewed below) but only two that contain a normal 
representative distribution of pathology reflecting the population of a screening program23,24; these datasets 
are nevertheless not readily available for public download. The popular DDSM dataset has an abnormal distri-
bution in that there are 695 normal findings and 1784 abnormal cases. This requires a sub-sampling strategy 
to achieve a realistic distribution, and even with this there are not enough normal cases. Of course, there are 
correlation strategies to compensate for skewed datasets, but there is always the danger that an algorithm will 
be over-specified for a particular set of data and will perform very differently when the distribution changes.

A second problem with all the available datasets is that they represent a range of acquisition technologies. 
For example, the DDSM and MIAS sets are digitized film images. Others contain a mixture of scanned, indirect 
and direct digital images. The file types include JPEG, TIFF, PGM and BMP. Strangely, few of them provide 
the medical standard DICOM format. This provides additional problems when trying to license software for 
medical applications as the test image format becomes a variable for consideration. Aside from the format itself, 
variations in spatial resolution and bit depth present challenges to programmers.

On the spatial resolution front, software that is designed to recognize clumps of small calcifications will 
overlook the fact that those calcifications may be present in a 0.5 mm pixel. On the other hand, discontinuities 
in tracts at 0.01 mm resolution may be misinterpreted as an anomaly.

Bit depth is useful to distinguish subtle differences in intensity. However, subtle differences are present in 
every breast image so the expanded grey scale range may not be particularly useful. The combination of high 
resolution and large bit depth creates a very large file that may increase processing times substantially. Reducing 
the bit depth to 8 bit from 16 bit lessened the processing time from hours to minutes25.

The file formats, resolution and size present real but not insurmountable barriers for efficient software devel-
opment. However, many existing public datasets do not contain some of the important instrument information 
such as anode type, operating energy, exposure time, window width, and filters and processing. This data is very 
useful in arriving at a consistent protocol for post-acquisition processing screening images. The DICOM file 
format contains this information as a header in each image file, negating the need to cross-reference a CSV file. 
For example, using information in the DICOM header, a classification detection algorithm can be adjusted for 
instrument variables including resolution and bit depth. Applications that can use the DICOM information can 
be deployed on Health Region networks where multiple camera types may be present. On the other hand, the 
DICOM dataset is large and may require parallel computing resources to process efficiently.

One of the main challenges with deep learning approaches to detection is the requirement for a sufficiently 
large training dataset in order to achieve high detection rates that could be ultimately generalized to a broad 
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population of patients. More patient image data, captured from a variety of imaging conditions can likely help 
with this generalization. One issue with the datasets for breast screening is there are not so many datasets speci-
fied on breast cancer screening containing normal and suspicious (probably cancerous) cases. The datasets that 
have been frequently used in different studies are:

Digital Database for Screening Mammography (DDSM) contains 10,480 images (2,620 exams)26, though 
the dataset is a digitalized scan of mammography. Suspicious cases are verified are benign or malignant. Masses 
and calcifications are identified and localized in malignant images and further categorized according to type. 
Further, breasts are categorized in terms of density using the ACR BI-RADS system. The portion of abnormal 
cases in this dataset is much higher than what would normally be found in a screening population, suggesting 
that this dataset does not directly reflect a screening program. Nevertheless, it could be used for screening pro-
grams since the images are divided into normal and suspicious cases.

CBIS-DDSM (Curated Breast Imaging Subset of DDSM) dataset27 consists of native size, enhanced mass 
segmentation, and pathologic diagnosis integrated into the training data, structured akin to contemporary com-
puter vision datasets. It contains 753 instances of calcification and 891 instances of masses. This dataset cannot 
be used for the screening program classification as all the cases are cancerous. However, it can be used to dis-
criminate between benign tumours and invasive ones.

MIAS: The MIAS dataset was first published in 1994 and has been widely used in research28. The MIAS 
dataset contains digitized versions of film images scanned at 50 micron resolution. The files are curated with 
information on the type of anomalies found in each image, as well as a composition rating of the background 
tissue. The MLO-view image files are PGM formatted, their overall size depends on the size of the breast tissue 
scanned. The dataset contains 161 pairs of images.

The InBreast dataset29 was introduced in 2011. It contains 115 cases, totalling 410 images. Ninety cases were 
women with both breasts affected, each with four images, while 25 cases involved mastectomy patients; they only 
had two images per patient. Specialists in this dataset provide accurate contours (ROI) in XML format.

VinDr30 was gathered in Vietnam from 5,000 mammography exams; each patient sample contains two 
medial lateral oblique and two cranial caudal views, resulting in 20,000 images in total. It used double-reads 
and resolved disagreements through arbitration. This dataset includes the Breast Imaging Reporting and Data 
System (BI-RADS) score, reported breast density and also annotates non-benign findings with their category, 
location, and BI-RADS assessment. The positive cases do not appear to be biopsy confirmed however, thus may 
contain some false positives.

CMMD : The Chinese Mammography Database (CMMD)31 contains 3712 mammographic images from 
1775 patients, divided to 2 separate parts. CMMD1 consists of 1026 cases (2214 images) with biopsy-confirmed 
benign or malignant tumours, while CMMD2 includes 1498 mammographs for 749 patients with known molec-
ular subtypes. This dataset was constructed to enhance the diversity of mammography data and foster advance-
ments in related fields. Each patient mammography includes craniocaudal (CC) and mediolateral oblique (MLO) 
projection images, stored as 8-bit grayscale DICOM files at 2294  × 1914 pixels resolution. Despite its value, the 
dataset’s limitations include its relatively small sample size and lack of marked regions of interest (ROI).

The RSNA dataset32 contained 54,713 digital mammograms from almost 8,000 patients. Of these, 570 were 
right breast positive, 588 were left breast positive, and 2 were positive in both breasts. This dataset is quite 
extensive but has only 2.1% percent positive cases, making it more similar to a screening population dataset 
than many others. As we reviewed random samples from the dataset, we observed instances where the indicated 
laterality of the breast was incorrect. For example, some images labeled as left were, in fact, right breast. This 
dataset is publicly available and was the subject of a recent Kaggle data challenge.

OPTIMAM (OMI-DB)23 is a very large FFDM-based dataset containing data from 172,282 women screened 
in the UK. Interval cancers are tracked as well as positive cases biopsy-confirmed. The dataset also contains 

Fig. 1  Age representation in NLBS, VINDR, InBreast, CMMD Datasets, and in Canada (women, 202435).
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pixel level annotations of tumour features. The dataset is available by request on a per-project basis, subject to 
committee approval.

The Swedish screening dataset (CSAW)24 also provides a sizable FFDM dataset directly drawn from a screen-
ing program in Sweden, containing data for 499.807 women. The dataset contains sigificant metadata, including 
biospy-verification and histological and tumour information. This data also only provides access by request and 
cannot be readily downloaded and used.

EMory BrEast Imaging Dataset (EMBED)33 also presents another large scale FFDM dataset, containing 
116,000 patients, from racially diverse backgrounds with a large (42%) African American representation, in 
contrast to other datasets which are more homogenous. This dataset does not appear limited strictly to screening 
populations, thus not reflective of these programs directly statistically. A portion (20 percent) of this dataset is 
available for download, other access must be requested.

ADMANI: Annotated Digital Mammograms and Associated Non-Image Datasets34 is another significant 
dataset collected in Australia containing 629,863 patients from 1 million screening episodes. Some portion of 
this data also appears in the RSNA Kaggle challenge dataset mentioned above32. Outside of this portion, however 
the dataset does not appear to be available.

The Breast Cancer Digital Repository (BCDR) is a comprehensive database aimed at advancing breast cancer 
detection and diagnosis methods. It contains cases from 1734 patients, including mammography and ultrasound 
images, clinical history, lesion segmentation, and image-based descriptors. The repository is subdivided into 
Film Mammography-based (BCDR-FM) and Full Field Digital Mammography-based (BCDR-DM) branches. 
BCDR-FM includes cases from 1010 patients, while BCDR-DM is still under construction and includes cases 
from 724 patients. Both repositories provide annotated patient cases, lesion outlines, and clinical data, making 
them valuable resources for research and training in breast cancer imaging.

Here we report our efforts to construct a mammography dataset with a realistic distribution in a medically 
relevant format.

Methods
Breast screening images were obtained through the auspices of the Newfoundland and Labrador Health Services 
(NLHS) breast screening program. Screening participants undertook mammographic image exams. These image 
are stored in a connected Picture Archiving and Communication System (PACS). Images were examined as part 
of the screening process and the results are stored as part of standard Electronic Health Records (EHR) at NLHS. 
Images were retrieved from the PACS suystem and were provided in DICOM format, anonymized in batch pro-
cesses within HOROS then stored on a local hard drive. The images are fully anonymized, with personal and loca-
tion identifying information removed. No further processing was performed on the data as provided in this dataset. 
Patients were informed that their data may be used to improve the screening program, but explicit consent to share 
the data under an open licence was not sought. However, due to this data anonymization, our distribution of the 
data was subject to review and approval by the Newfoundland and Labrador Health Research Ethics Board (HREB) 
under HREB reference # 2025.020, where a waiver of consent was granted due to the anonymization of the data.

The data was collected on GE digital Senograph Essential flat field digital devices (manufactured 2008-10). 
The local screening program provided the classifications. All cases listed as positive were confirmed through 
additional diagnostic procedures and by laboratory analyses. False positive cases were those initially iden-
tified as suspicious by the screening radiologist, but later determined to be normal by additional diagnostic 
procedures and laboratory analysis. Normal cases are those deemed normal by the screening radiologist and 
subsequently determined to be normal by lack of interval cancer. These designations were provided by the 
screening program. In all, 26,988 images representing 5997 cases were obtained. Of these, 5935 cases were 

Fig. 2  Cancer rates by age in various mammography datasets.
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determined to be unique. The remaining exams were individuals screened twice in the roughly 2 year data 
collection period.

The NL-Breast-Screening (NLBS) dataset contains native-resolution anonymized DICOM (16 bit, 2394 x 
3062 [7.34 megapixels] and 1915 x 2295[4.39 megapixels]) files. The images were obtained using similar equip-
ment. Mean age in the 4.39 Mpixel set versus the 7.34 Mpixel set was significantly lower (p < 0.001) in the false 
positive (58.4  ± 6.9 vs. 59.1  ± 7.1) and normal groups (59.4  ± 7.1 vs. 60.6  ± 7.1) but not in the positive group 
(62.2  ± 7.6 vs. 61.8  ± 7.2) (Fig. 1).

This dataset is large enough that meaningful classification studies can be performed using realistic prior 
probabilities. The incidence of cancer by age in this dataset is more reflective of that in a screening population 
compared with other readily-available datasets (Fig. 2). The classification exercise then must struggle with the 
bias to normalcy that is similar to the situation in the clinic. There are 19942 normal images representing 4332 
cases (4301 unique), 1516 false positive cases (1484 unique) containing 6394 images, and 149 unique cancer 
cases with 652 images (See Table 1 for a more complete summary of the dataset).

The vast majority of these images were obtained using the Rhodium anode (25655) with a mean energy of 29  ± 
0.7 keV, images obtained using the Molybdenum anode (2312) used a mean energy of 27  ± 0.6 keV. In Table 1, it 
may be noted that the mean age of the “positive” group was 61.9  ± 7.3, that of the false positive group 58.9  ± 7.0 
and that of the normal group 60.2  ± 7.1. The balance of image laterality representation (R/L) was similar among the 
groups: abnormal 324/328, false positive 3208/3186 and normal 10017/9925. Similarly, the view MLO/CC (13800/ 
13188) distribution was similar for each group: positive - 326/326, false positive 3206/3188, and normal 9656/10286.

It may be argued that the number of confirmed positive cases is insufficient to represent all potential cancer 
presentations. Our plan is to continue collecting data to address this potential deficiency. In the meantime, one 
can also augment the dataset with images from other available datasets (e.g. CMMD, VinDr or RSNA datasets). 
Having said that, it is important to note that the populations represented in the Chinese and Vietnamese data-
sets may have biophysical characteristics that differ from the Canadian population represented in our dataset. 
For example, our NLBS participants are somewhat older than those in VinDr and CMMD datasets (See Fig. 2). 
This reflects the screening guidelines in Canada (≥ 50 ≤ 70 and the age distribution of the Canadian female 
population.

Annotations which classify the breast as dense, fatty or intermediate and positive-case features classified as 
masses, calcifications or architectural distortions are not included. However, the dataset is well verified since all 
normal cases are verified as cancer free for at least two years, the false positive group was verified by biopsy or 
additional diagnostic imaging and the positive group was biopsy confirmed.

The DICOM dataset is approximately 350 GB, representing a broad range of pathology and normalcy. The 
great advantage of including the DICOM headers is that these can be interrogated to identify sequential scans, 
age, and a host of equipment factors that can inform a classification investigation.

Data Records
For the dataset presented, DICOM images and radiologists findings of the dataset have been made available at 
the Federated Research Data Repository (FRDR)36.

At the case level, the set of exam images are classified as either positive, normal or false positive. At the 
highest level, the dataset is organized therefore into three main folders, positive/, normal/ or false 
positive/. Beneath each of these top-level folders is a set of folders, each representing a patient case with 
the finding of the top level folder named with a de-identified label. Within this folder are all the images for this 
particular case, contained within two more sub folders, CC/ and MLO/, containing two images each for the 
craniocauda (CC) and mediolateral oblique (MLO) views, respectively.

Patient-case level findings are stored in a CSV file NLBSP-meta.csv. There are 6 columns in the CSV file: 

•	 File Path: Relative path of DICOM file, based on the file path structure described above.
•	 Image Laterality: Laterality of the DICOM image (also reflected in the file path).

All Normal False positive Positive

Cases 5997 4332 1516 149

Images 26988 19942 6394 652

Images/case 4.6 4.2 4.4

Mean age (y) 61.9  ± 7.3 58.9  ± 7.0 60.2  ± 7.1

Median age (y) 60.1 58.0 61.0

75%ile age (y) 65.7 63.0 67.0

Exams/ case 6.12 4.12 5.13

Right breast images 13549 10017 3208 324

Left breast images 13439 9925 3186 328

Cranial caudal view 13800 9656 3206 326

Medial lateral oblique view 13188 10286 3188 326

4.39Mpx 8267 6291 1848 128

7.34Mpx 18695 13636 4536 523

Table 1.  Description of the NLBS dataset.
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•	 View Position: CC or MLO (also reflected in the file path).
•	 Age: Age of the screening participant in the image at location specified in File Path.
•	 Cancer: This column is 1 if cancer was found, and 0 for a normal case.
•	 False Positive: This column will read 1 for an image that was positive, but later confirmed as negative. 

Otherwise the column will be 0.

Within the DICOM file specified at File Path, a variety of other informative fields are populated, how-
ever any identifying fields have been blanked for privacy protection purposes.

Technical Validation
The data was anonymized to ensure that individually identifiable health information or PHI was completely 
removed. In addition, image content was reviewed manually to ensure no patient data remained in mammogra-
phy images or other images files.

Usage Notes
Herein is a description of a novel dataset for mammogram-based AI studies. The FFDM data was collected 
on similar equipment consequently resolution and image presentation are consistent throughout. The dataset 
is fully validated as to outcome. However, it lacks image annotation and textual summative findings. The age 
demographic is well understood and the ethnicity is assumed to be European.

Data availability
The data is publicly available from the Federated Research Data Repository (FRDR) under the Creative Commons 
Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) license36. There are two 
versions provided, one with a single compressed archive containing all data in one file, with the other version 
having the dataset split into three separate files with the metadata CSV file available separately.

Code availability
No custom code has been used in processing of this dataset.
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