Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
A 32-year species-specific live fuel moisture content dataset for southern California chaparral
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 12 February 2026

A 32-year species-specific live fuel moisture content dataset for southern California chaparral

  • Kevin Varga1,2,3 &
  • Charles Jones  ORCID: orcid.org/0000-0003-4808-69771,2 

Scientific Data , Article number:  (2026) Cite this article

  • 733 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric dynamics
  • Ecological modelling
  • Fire ecology
  • Natural hazards

Abstract

Live fuel moisture content (LFMC) strongly affects the behavior of wildland fire, resulting in its incorporation into wildfire spread models and danger ratings. In this study, over ten thousand LFMC observations are combined with predictor variables from Landsat imagery and the Weather Research and Forecasting model to train species-specific random forest models that predict the LFMC of four fuel types—chamise, old growth chamise, black sage, and bigpod ceanothus. These models are then utilized to create a historical, 32-year long, LFMC dataset in southern California chaparral. Additionally, the high spatial and temporal sampling frequency of chamise allowed for quantile mapping bias correction to be applied. The final chamise output, which is the most robust, has a mean absolute error of 9.68% and an R2 value of 0.76. The LFMC dataset successfully captures the variability in the annual cycle, the spatial heterogeneity, and the interspecies differences, which makes it applicable for better understanding varying fire season characteristics and landscape level flammability.

Similar content being viewed by others

Globe-LFMC 2.0, an enhanced and updated dataset for live fuel moisture content research

Article Open access 04 April 2024

A national-scale sampled temperate fuel moisture database

Article Open access 06 September 2024

Climate warming increases extreme daily wildfire growth risk in California

Article 30 August 2023

Data availability

The LFMC dataset described in this work is available on Dryad (https://doi.org/10.5061/dryad.rjdfn2zkw). The LFMC observations used for training the models are also available on Dryad. The observations were downloaded from the US National Fuel Moisture Database (https://github.com/wmjolly/pyNFMD) and the Santa Barbara County Fire Department (https://sbcfire.com/wildfire-predictive-services/). The data used for LFMC model predictors is publicly available via the UCSB CLIVAC Lab (https://clivac.eri.ucsb.edu/clivac/SBCWRFD/index.html) and the NASA Landsat program (https://doi.org/10.1016/j.srs.2023.100103).

Code availability

The codebase for the creation of this dataset is publicly available as Jupyter Notebooks on GitHub (https://github.com/kcvarga7/sba_lfm_1987-2019). All code was written in Python, with the exception of the GEE script used for downloading Landsat imagery. That GEE script is referenced in the GitHub readme, as well as the applicable Jupyter Notebook.

References

  1. Keane, R. E. Wildland Fuel Fundamentals and Applications. https://doi.org/10.1007/978-3-319-09015-3. (Springer International, 2015).

  2. Drucker, J. R., Farguell, A., Clements, C. B. & Kochanski, A. K. A live fuel moisture climatology in California. Front. For. Glob. Change 6, 1203536, https://doi.org/10.3389/ffgc.2023.1203536 (2023).

    Google Scholar 

  3. Dennison, P. E. & Moritz, M. A. Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation. Int. J. Wildland Fire 18, 1021, https://doi.org/10.1071/WF08055 (2009).

    Google Scholar 

  4. Park, I., Fauss, K. & Moritz, M. A. Forecasting Live Fuel Moisture of Adenostema fasciculatum and Its Relationship to Regional Wildfire Dynamics across Southern California Shrublands. Fire 5, 110, https://doi.org/10.3390/fire5040110 (2022).

    Google Scholar 

  5. Ma, W. et al. Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model. Biogeosciences 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021 (2021).

    Google Scholar 

  6. Jolly, W. & Johnson, D. Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research. Fire 1, 8, https://doi.org/10.3390/fire1010008 (2018).

    Google Scholar 

  7. Cakpo, C. B. et al. Exploring the role of plant hydraulics in canopy fuel moisture content: insights from an experimental drought study on Pinus halepensis Mill. and Quercus ilex L. Ann. For. Sci. 81, 26, https://doi.org/10.1186/s13595-024-01244-9 (2024).

    Google Scholar 

  8. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566, https://doi.org/10.1111/nph.16485 (2020).

    Google Scholar 

  9. Griebel, A. et al. Specific leaf area and vapour pressure deficit control live fuel moisture content. Funct. Ecol. 37, 719–731, https://doi.org/10.1111/1365-2435.14271 (2023).

    Google Scholar 

  10. Pivovaroff, A. L. et al. The Effect of Ecophysiological Traits on Live Fuel Moisture Content. Fire 2, 28, https://doi.org/10.3390/fire2020028 (2019).

    Google Scholar 

  11. Jolly, W. M., Conrad, E. T., Brown, T. P. & Hillman, S. C. Combining ecophysiology and combustion traits to predict conifer live fuel moisture content: a pyro-ecophysiological approach. Fire Ecol. 21, 19, https://doi.org/10.1186/s42408-025-00361-8 (2025).

    Google Scholar 

  12. Qi, Y., Dennison, P. E., Spencer, J. & Riaño, D. Monitoring Live Fuel Moisture Using Soil Moisture and Remote Sensing Proxies. Fire Ecol. 8, 71–87, https://doi.org/10.4996/fireecology.0803071 (2012).

    Google Scholar 

  13. Brown, T. P. et al. Decoupling between soil moisture and biomass drives seasonal variations in live fuel moisture across co-occurring plant functional types. Fire Ecol. 18, 14, https://doi.org/10.1186/s42408-022-00136-5 (2022).

    Google Scholar 

  14. Kozlowski, T. T., Kramer, P. J. & Pallardy, S. G. The Physiological Ecology of Woody Plants. Tree Physiol. 8, 213, https://doi.org/10.1093/treephys/8.2.213 (1991).

    Google Scholar 

  15. Wallace, J. M. & Hobbs, P. V. Atmospheric Science: An Introductory Survey. https://doi.org/10.1016/C2009-0-00034-8. (Elsevier, 2006).

  16. Finney, M. A., McAllister, S. S., Grumstrup, T. P. & Forthofer, J. M. Wildland Fire Behaviour: Dynamics, Principles, and Processes, https://doi.org/10.1071/9781486309092. (CSIRO Publishing, 2021).

  17. Sun, L., Zhou, X., Mahalingam, S. & Weise, D. R. Comparison of burning characteristics of live and dead chaparral fuels. Combust. Flame 144, 349–359, https://doi.org/10.1016/j.combustflame.2005.08.008 (2006).

    Google Scholar 

  18. Jolly, W. M., Freeborn, P. H., Bradshaw, L. S., Wallace, J. & Brittain, S. Modernizing the US National Fire Danger Rating System (version 4): Simplified fuel models and improved live and dead fuel moisture calculations. Environ. Model. Softw. 181, 106181, https://doi.org/10.1016/j.envsoft.2024.106181 (2024).

    Google Scholar 

  19. Capps, S. B., Zhuang, W., Liu, R., Rolinski, T. & Qu, X. Modelling chamise fuel moisture content across California: a machine learning approach. Int. J. Wildland Fire 31, 136–148, https://doi.org/10.1071/WF21061 (2021).

    Google Scholar 

  20. Rao, K., Williams, A. P., Flefil, J. F. & Konings, A. G. SAR-enhanced mapping of live fuel moisture content. Remote Sens. Environ. 245, 111797, https://doi.org/10.1016/j.rse.2020.111797 (2020).

    Google Scholar 

  21. McCandless, T. C., Kosovic, B. & Petzke, W. Enhancing wildfire spread modelling by building a gridded fuel moisture content product with machine learning. Mach. Learn. Sci. Technol. 1, 035010, https://doi.org/10.1088/2632-2153/aba480 (2020).

    Google Scholar 

  22. Peterson, S., Roberts, D. & Dennison, P. Mapping live fuel moisture with MODIS data: A multiple regression approach. Remote Sens. Environ. 112, 4272–4284, https://doi.org/10.1016/j.rse.2008.07.012 (2008).

    Google Scholar 

  23. Yebra, M. et al. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 136, 455–468, https://doi.org/10.1016/j.rse.2013.05.029 (2013).

    Google Scholar 

  24. Balaguer-Romano, R. et al. Modeling fuel moisture dynamics under climate change in Spain’s forests. Fire Ecol. 19, 65, https://doi.org/10.1186/s42408-023-00224-0 (2023).

    Google Scholar 

  25. Nolan, R. H. et al. Drought-related leaf functional traits control spatial and temporal dynamics of live fuel moisture content. Agric. For. Meteorol. 319, 108941, https://doi.org/10.1016/j.agrformet.2022.108941 (2022).

    Google Scholar 

  26. Yebra, M. et al. Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Sci. Data 6, 155, https://doi.org/10.1038/s41597-019-0164-9 (2019).

    Google Scholar 

  27. Finney, M. A. FARSITE: Fire Area Simulator-Model Development and Evaluation. 10.2737/RMRS-RP-4. RMRS-RP-4, https://www.fs.usda.gov/treesearch/pubs/4617 (1998).

  28. Finney, M. A. An Overview of FlamMap Fire Modeling Capabilities. Andrews Patricia Butl. Bret W Comps 2006 Fuels Manag.- Meas. Success Conf. Proc. 28-30 March 2006 Portland Proc. RMRS-P-41 Fort Collins CO US Dep. Agric. For. Serv. Rocky Mt. Res. Stn. P 213-220 041, https://research.fs.usda.gov/treesearch/25948 (2006).

  29. Tymstra, C. Development and Structure of Prometheus: The Canadian Wildland Fire Growth Simulation Model. https://publications.gc.ca/site/eng/380448/publication.html. (Northern Forestry Centre, Edmonton, 2010).

  30. Varga, K. et al. Megafires in a Warming World: What Wildfire Risk Factors Led to California’s Largest Recorded Wildfire. Fire 5, 16, https://doi.org/10.3390/fire5010016 (2022).

    Google Scholar 

  31. Seto, D. et al. Simulating Potential Impacts of Fuel Treatments on Fire Behavior and Evacuation Time of the 2018 Camp Fire in Northern California. Fire 5, 37, https://doi.org/10.3390/fire5020037 (2022).

    Google Scholar 

  32. Zahn, S. & Henson, C. Fuel Moisture Collection Methods - A Field Guide. https://www.fs.usda.gov/t-d/pubs/pdf/11511803.pdf (2011).

  33. Jones, C., Carvalho, L. M. V., Duine, G.-J. & Zigner, K. Climatology of Sundowner winds in coastal Santa Barbara, California, based on 30 yr high resolution WRF downscaling. Atmospheric Res. 249, 105305, https://doi.org/10.1016/j.atmosres.2020.105305 (2021).

    Google Scholar 

  34. Crawford, C. J. et al. The 50-year Landsat collection 2 archive. Sci. Remote Sens. 8, 100103, https://doi.org/10.1016/j.srs.2023.100103 (2023).

    Google Scholar 

  35. CALFIRE FRAP. Vegetation (fveg). https://map.dfg.ca.gov/metadata/ds1327.html (2015).

  36. Sawyer, J. O., Keeler-Wolf, T. & Evens, J. A Manual of California Vegetation, Second Edition. https://vegetation.cnps.org/ (California Native Plant Society, 2009).

  37. United State Goverment. National Fuel Moisture Database. https://github.com/wmjolly/pyNFMD.

  38. Santa Barbara County Fire Department. Live Fuel Moisture Program. https://sbcfire.com/wildfire-predictive-services/.

  39. Jones, C. Santa Barbara County WRF Downscaling Data. https://clivac.eri.ucsb.edu/clivac/SBCWRFD/index.html.

  40. Hong, S.-Y. & Lim, J.-O. J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia-Pac. J. Atmospheric Sci. 42, 129–151, https://www2.mmm.ucar.edu/wrf/site_linked_files/phys_refs/micro_phys/WSM6.pdf (2006).

    Google Scholar 

  41. Iacono, M. J. et al. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. https://doi.org/10.1029/2008JD009944. J. Geophys. Res. Atmospheres 113 (2008).

  42. Niu, G.-Y. et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. https://doi.org/10.1029/2010JD015139. J. Geophys. Res. Atmospheres 116 (2011).

  43. Nakanishi, M. & Niino, H. Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. Journal of the Meteorological Society of Japan 87, 895–912, https://doi.org/10.2151/jmsj.87.895 (2009).

    Google Scholar 

  44. Olson, J. B. et al. A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF–ARW. https://repository.library.noaa.gov/view/noaa/19837 (2019).

  45. Duine, G.-J., Jones, C., Carvalho, L. M. V. & Fovell, R. G. Simulating Sundowner Winds in Coastal Santa Barbara: Model Validation and Sensitivity. Atmosphere 10, 155, https://doi.org/10.3390/atmos10030155 (2019).

    Google Scholar 

  46. Zigner, K. et al. Evaluating the Ability of FARSITE to Simulate Wildfires Influenced by Extreme, Downslope Winds in Santa Barbara, California. Fire 3, 29, https://doi.org/10.3390/fire3030029 (2020).

    Google Scholar 

  47. Zigner, K. et al. Wildfire Risk in the Complex Terrain of the Santa Barbara Wildland–Urban Interface during Extreme Winds. Fire 5, 138, https://doi.org/10.3390/fire5050138 (2022).

    Google Scholar 

  48. Duine, G.-J., Carvalho, L. M. V. & Jones, C. Mesoscale patterns associated with two distinct heatwave events in coastal Santa Barbara, California, and their impact on local fire risk conditions. Weather Clim. Extrem. 37, 100482, https://doi.org/10.1016/j.wace.2022.100482 (2022).

    Google Scholar 

  49. Allen, R., Pereira, L., Raes, D. & Smith, M. FAO Irrigation and Drainage Paper No. 56. https://www.fao.org/4/x0490e/x0490e00.htm (1998).

  50. Ruffault, J., Martin-StPaul, N., Pimont, F. & Dupuy, J. L. How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agric. For. Meteorol. 262, 391–401, https://doi.org/10.1016/j.agrformet.2018.07.031 (2018).

    Google Scholar 

  51. Breiman, L. Random Forests. Mach. Learn. 45, 5–32, https://doi.org/10.1023/A:1010933404324 (2001).

    Google Scholar 

  52. Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, e1602244, https://doi.org/10.1126/sciadv.1602244 (2017).

    Google Scholar 

  53. McMahon, C. A. et al. A river runs through it: Robust automated mapping of riparian woodlands and land surface phenology across dryland regions. Remote Sens. Environ. 305, 114056, https://doi.org/10.1016/j.rse.2024.114056 (2024).

    Google Scholar 

  54. Camprubí, À. C., González-Moreno, P. & Resco de Dios, V. Live Fuel Moisture Content Mapping in the Mediterranean Basin Using Random Forests and Combining MODIS Spectral and Thermal Data. Remote Sens. 14, 3162, https://doi.org/10.3390/rs14133162 (2022).

    Google Scholar 

  55. Varga, K. & Jones, C. A. 32-year species-specific live fuel moisture content dataset for southern California chaparral. Dryad https://doi.org/10.5061/dryad.rjdfn2zkw (2025).

  56. Hanes, T. L. Succession after Fire in the Chaparral of Southern California. Ecol. Monogr. 41, 27–52, https://doi.org/10.2307/1942434 (1971).

    Google Scholar 

  57. Hastie, T., Tibshirani, R. & Friedman, J. Random Forests. in The Elements of Statistical Learning: Data Mining, Inference, and Prediction (eds Hastie, T., Tibshirani, R. & Friedman, J.) 587–604, https://doi.org/10.1007/978-0-387-84858-7_15. (Springer, New York, NY, 2009).

  58. Meinshausen, N. Quantile Regression Forests. J. Mach. Learn. Res. 7, 983–999, http://jmlr.org/papers/v7/meinshausen06a.html (2006).

    Google Scholar 

  59. Quan, X. et al. Global fuel moisture content mapping from MODIS. Int. J. Appl. Earth Obs. Geoinformation 101, 102354, https://doi.org/10.1016/j.jag.2021.102354 (2021).

    Google Scholar 

  60. Moritz, M. A. et al. Beyond a Focus on Fuel Reduction in the WUI: The Need for Regional Wildfire Mitigation to Address Multiple Risks. Front. For. Glob. Change 5, 848254, https://doi.org/10.3389/ffgc.2022.848254 (2022).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the NASA Future Investigators in NASA Earth and Space Science and Technology program (Award No. 80NSSC21K1630), the University of California Office of the President Laboratory Fees Program (Grant ID: LFR-20-652467), and The Nature Conservancy’s Jack and Laura Dangermond Preserve. We would also like to acknowledge high-performance computing support provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation Prediction of and Resilience against Extreme Events program (Award No. 1664173). Lastly, we thank Matt Jolly, United States Forest Service Ecologist, for providing essential live fuel moisture observations.

Author information

Authors and Affiliations

  1. Department of Geography, University of California Santa Barbara, Santa Barbara, USA

    Kevin Varga & Charles Jones

  2. Earth Research Institute, University of California Santa Barbara, Santa Barbara, USA

    Kevin Varga & Charles Jones

  3. School of Integrated Sciences, James Madison University, Harrisonburg, USA

    Kevin Varga

Authors
  1. Kevin Varga
    View author publications

    Search author on:PubMed Google Scholar

  2. Charles Jones
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Kevin Varga: Conceptualization, methodology, data curation, formal analysis, visualization, writing-original draft preparation, writing-review and editing. Charles Jones: Conceptualization, methodology, writing-review and editing, supervision.

Corresponding author

Correspondence to Kevin Varga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, K., Jones, C. A 32-year species-specific live fuel moisture content dataset for southern California chaparral. Sci Data (2026). https://doi.org/10.1038/s41597-026-06794-3

Download citation

  • Received: 02 May 2025

  • Accepted: 03 February 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06794-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing