Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
HISTONCHO: A dataset of intervention histories for onchocerciasis control & elimination in sub-Saharan Africa
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 19 February 2026

HISTONCHO: A dataset of intervention histories for onchocerciasis control & elimination in sub-Saharan Africa

  • Matthew A. Dixon  ORCID: orcid.org/0000-0002-1710-62371,
  • Martin Walker  ORCID: orcid.org/0000-0001-8714-53651,2,
  • Aditya Ramani  ORCID: orcid.org/0009-0006-2120-46292,
  • Jenna E. Coalson3,
  • Emily Griswold3,
  • Gregory S. Noland3,
  • Andrew Tate4,
  • Emeka Makata5,
  • Ahmed M. A. Ali6,
  • Jorge Cano7,
  • Paul Bessell8,
  • Claudio Fronterrè9,
  • Raiha Browning10,
  • Wilma A. Stolk11 &
  • …
  • Maria-Gloria Basáñez1 

Scientific Data , Article number:  (2026) Cite this article

  • 369 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Epidemiology
  • Parasitic infection

Abstract

In sub-Saharan Africa (SSA), onchocerciasis control has been implemented for many decades, beginning in 1974 under the Onchocerciasis Control Programme in West Africa (OCP) and in 1995 in Central and East Africa (plus Liberia) under the African Programme for Onchocerciasis Control (APOC). Since the establishment of the Expanded Special Project for Elimination of Neglected Tropical Diseases (ESPEN) in 2016, data on mass drug administration (MDA) with ivermectin has been centrally compiled for all endemic countries at implementation unit (IU) level, beginning in 2013. This paper presents HISTONCHO, a dataset collating detailed information on interventions, including vector control, from 1975 through to 2022, using the ESPEN portal (2013–2022), regional and country reports, implementation partners’ records, and published literature. Reconstructing such intervention histories is crucial for an understanding of their evolution, modelling their impact, and tailoring future interventions. We discuss strengths and limitations associated with the ESPEN database, and how HISTONCHO can be improved to support modelling of intervention strategies as well as onchocerciasis control and elimination efforts by endemic country programmes.

Similar content being viewed by others

Reaching elimination of onchocerciasis transmission with long-term vector control and ivermectin treatment in Togo

Article Open access 19 December 2025

Modelling onchocerciasis-associated epilepsy and the impact of ivermectin treatment on its prevalence and incidence

Article Open access 25 July 2024

Community acceptance of Ivermectin mass drug administration for malaria in Southern Thailand

Article Open access 08 August 2025

Data availability

The HISTONCHO dataset is openly accessible as RDS and CSV files at the following Zenodo link: https://zenodo.org/records/15390119.

Code availability

The code used to reconstruct the intervention histories, using the data sources described throughout the Methods section, is available at the following GitHub link: https://github.com/mrc-ide/HISTONCHO. Updates to the HISTONCHO dataset are encouraged through pull requests. Worked examples are provided through an R Notebook, available on the GitHub repository.

References

  1. Burnham, G. Onchocerciasis. Lancet 351, 1341–1346 (1998).

    Google Scholar 

  2. Colebunders, R. et al. Reducing onchocerciasis-associated morbidity in onchocerciasis-endemic foci with high ongoing transmission: a focus on the children. Int J Infect Dis 116, 302–305 (2022).

    Google Scholar 

  3. Walker, M. et al. Density-dependent mortality of the human host in onchocerciasis: relationships between microfilarial load and excess mortality. PLoS Negl Trop Dis 6, e1578 (2012).

    Google Scholar 

  4. Zhu, Y. S. et al. Prevalence and attributable health burdens of vector-borne parasitic infectious diseases of poverty, 1990–2021: findings from the Global burden of disease study 2021. Infect Dis Poverty 13(1), 96 (2024).

  5. Institute for Health Metrics and Evaluation. GBD Compare (2024). https://vizhub.healthdata.org/gbd-compare/ (Accessed 13 February 2026).

  6. Mutono, N. et al. Elimination of transmission of onchocerciasis (river blindness) with long-term ivermectin mass drug administration with or without vector control in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Glob Health 12, e771–e782 (2024).

    Google Scholar 

  7. Boatin, B. The Onchocerciasis Control Programme in West Africa (OCP). Ann Trop Med Parasitol 102(Suppl 1), 13–17 (2008).

    Google Scholar 

  8. Amazigo, U. The African Programme for Onchocerciasis Control (APOC). Ann Trop Med Parasitol 102(Suppl 1), 19–22 (2008).

    Google Scholar 

  9. Hougard, J. M., Yaméogo, L., Sékétéli, A., Boatin, B. & Dadzie, K. Y. Twenty-two years of blackfly control in the onchocerciasis control programme in West Africa. Parasitol Today 13, 425–431 (1997).

    Google Scholar 

  10. O’Hanlon, S. J. et al. Model-based geostatistical mapping of the prevalence of Onchocerca volvulus in West Africa. PLoS Negl Trop Dis 10, e0004328 (2016).

    Google Scholar 

  11. Boatin, B. A. & Richards, F. O. Jr. Control of onchocerciasis. Adv Parasitol 61, 349–394 (2006).

    Google Scholar 

  12. Kale, O., Grunewald, J., Koulischer, G., Massougbodji, A. & Sachndeva, P. Onchocerciasis Control Programme external evaluation. Ouagadougou: African Programme for Onchocerciasis Control, World Health Organization (2002). https://iris.who.int/handle/10665/345205 (Accessed 13 February 2026).

  13. Yaméogo, L. Special Intervention Zones. Ann Trop Med Parasitol 102(Suppl 1), 23–24 (2008).

    Google Scholar 

  14. Abiose, A. et al. Mid-term review of the activities in the Special Intervention Zones (SIZ) and effectiveness of onchocerciasis surveillance systems of the ex-OCP countries (2005). https://iris.who.int/bitstream/handle/10665/343186/JAF11-INF-DOC2-eng.pdf?sequence=1 (Accessed 13 February 2026).

  15. Diawara, L. et al. Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: first evidence from studies in Mali and Senegal. PLoS Negl Trop Dis 3, e497 (2009).

    Google Scholar 

  16. Wilson, N. O. et al. Evaluation of lymphatic filariasis and onchocerciasis in three Senegalese districts treated for onchocerciasis with ivermectin. PLoS Negl Trop Dis 10, e0005198 (2016).

    Google Scholar 

  17. Borsboom, G. J. J. M. et al. Impact of ivermectin on onchocerciasis transmission: assessing the empirical evidence that repeated ivermectin mass treatments may lead to elimination/ eradication in West-Africa. Filaria J 2, 8 (2003).

    Google Scholar 

  18. Noma, M. et al. The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis Control: (1) priority areas for ivermectin treatment. Parasit Vectors 7, 325 (2014).

    Google Scholar 

  19. Homeida, M. et al. APOC’s strategy of community-directed treatment with ivermectin (CDTI) and its potential for providing additional health services to the poorest populations. African Programme for Onchocerciasis Control. Ann Trop Med Parasitol 96(Suppl 1), S93–S104 (2002).

    Google Scholar 

  20. Hopkins, A. D. Neglected tropical diseases in Africa: a new paradigm. Int Health 8(Suppl 1), i28–i33 (2016).

    Google Scholar 

  21. World Health Organization (WHO) Regional Office for Africa. WHO unveils new analytical tools at ESPEN data portal (2021). https://www.afro.who.int/news/who-unveils-new-analytical-tools-espen-data-portal (Accessed 13 February 2026).

  22. Expanded Special Project for the Elimination of Neglected Tropical Diseases (ESPEN) (2022). https://espen.afro.who.int/diseases/onchocerciasis (Accessed 13 February 2026).

  23. Zouré, H. G. M. et al. The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis Control: (2) pre-control endemicity levels and estimated number infected. Parasit Vectors 7, 326 (2014).

    Google Scholar 

  24. Coffeng, L. E. et al. Onchocerciasis: the pre-control association between prevalence of palpable nodules and skin microfilariae. PLoS Negl Trop Dis 7, e2168 (2013).

    Google Scholar 

  25. Coffeng, L. E. Onchocerciasis: the pre-control association between prevalence of palpable nodules and skin microfilariae - technical note and posterior draws for conversion equation (2024). https://zenodo.org/records/13969100 (Accessed 13 February 2026).

  26. WHO/APOC. The WHO African Programme for Onchocerciasis Control final evaluation report. World Health Organization (2015). https://cdn.who.int/media/docs/default-source/documents/evaluation/evaluation-onchocerciasis-control.pdf?sfvrsn=f812abe5_2 (Accessed 13 February 2026).

  27. Walker, M. et al. Modelling the elimination of river blindness using long-term epidemiological and programmatic data from Mali and Senegal. Epidemics 18, 4–15 (2017).

    Google Scholar 

  28. Herrador, Z. et al. Interruption of onchocerciasis transmission in Bioko Island: accelerating the movement from control to elimination in Equatorial Guinea. PLoS Negl Trop Dis 12, e0006471 (2018).

    Google Scholar 

  29. Hernández-González, A. et al. Evaluation of onchocerciasis seroprevalence in Bioko Island (Equatorial Guinea) after years of disease control programmes. Parasit Vectors 9, 509 (2016).

    Google Scholar 

  30. Traoré, S. et al. The elimination of the onchocerciasis vector from the island of Bioko as a result of larviciding by the WHO African Programme for Onchocerciasis Control. Acta Trop 111, 211–218 (2009).

    Google Scholar 

  31. Ethiopian Federal Ministry of Health. The Third National Neglected Tropical Diseases Strategic Plan 2021–2025 (2021) https://espen.afro.who.int/sites/default/files/content/document/Third%20NTD%20national%20Strategic%20Plan%202021-2025_0.pdf (Accessed 13 February 2026).

  32. Kifle, B. & Nigatu, M. Compliance to a five-year biannual ivermectin treatment for onchocerciasis elimination and its determinants among adults in the Bench Maji Zone, Southwest Ethiopia: A community-based cross-sectional study. J Parasitol Res 2021, 8866639 (2021).

    Google Scholar 

  33. Federal Ministry of Health and Social Welfare, Nigeria. National Onchocerciasis Snapshot. Data available upon request (2022).

  34. Federal Ministry of Health and Social Welfare, Nigeria, The Carter Centre & Sightsavers. Onchocerciasis MDA history by Local Government Authority. Data available upon request (2023).

  35. Amaral, L.-J. et al. Impact of annual community-directed treatment with ivermectin on the incidence of epilepsy in Mvolo, a two-year prospective study. PLoS Negl Trop Dis 18, e0012059 (2024).

    Google Scholar 

  36. Colebunders, R. et al. High prevalence of onchocerciasis-associated epilepsy in villages in Maridi County, Republic of South Sudan: a community-based survey. Seizure 63, 93–101 (2018).

    Google Scholar 

  37. Jada, S. R. et al. Effect of onchocerciasis elimination measures on the incidence of epilepsy in Maridi, South Sudan: a 3-year longitudinal, prospective, population-based study. Lancet Glob Health 11, e1260–e1268 (2023).

    Google Scholar 

  38. Federal Ministry of Health, Sudan & The Carter Centre. National onchocerciasis MDA data. Data available upon request (2023).

  39. Zarroug, I. M. et al. The first confirmed elimination of an onchocerciasis focus in Africa: Abu Hamed, Sudan. Am J Trop Med Hyg 95, 1037–1040 (2016).

    Google Scholar 

  40. Mushi, V. Implementation challenges of community directed treatment with ivermectin program for control of onchocerciasis in Ulanga, Tanzania. East Afr Health Res J 5, 123–128 (2021).

    Google Scholar 

  41. Bhwana, D. et al. Impact of a bi-annual community-directed treatment with ivermectin programme on the incidence of epilepsy in an onchocerciasis-endemic area of Mahenge, Tanzania: a population-based prospective study. PLoS Negl Trop Dis 17, e0011178 (2023).

    Google Scholar 

  42. Katabarwa, M. N. et al. After 70 years of fighting an age-old scourge, onchocerciasis in Uganda, the end is in sight. Int Health 10(Suppl 1), i79–i88 (2018).

    Google Scholar 

  43. Zoerhoff, K. L. et al. How well do coverage surveys and programmatically reported mass drug administration coverage match? Results from 214 mass drug administration campaigns in 15 countries, 2008–2017. BMJ Glob Health 8, e011193 (2023).

    Google Scholar 

  44. World Health Organization. Onchocerciasis elimination mapping: a handbook for national elimination programmes (2024). https://www.who.int/publications/i/item/9789240099227 (Accessed 13 February 2026).

  45. Cromwell, E. A. et al. Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning. PLoS Negl Trop Dis 15, e0008824 (2021).

    Google Scholar 

  46. World Health Organization. Report of the first meeting of the Global Onchocerciasis Network for Elimination, Saly Mbour, Senegal, 1–2 November 2023. Geneva: World Health Organization (2023). https://www.who.int/publications/b/71381 (Accessed 13 February 2026).

  47. Bagcchi, S. GONE to combat onchocerciasis. Lancet Microbe 5, e315 (2024).

    Google Scholar 

  48. Eyang-Assengone, E. R. et al. Status of onchocerciasis elimination in Gabon and challenges: a systematic review. Microorganisms 11, 1946 (2023).

    Google Scholar 

  49. Molyneux, D. H., Bradley, M., Hoerauf, A., Kyelem, D. & Taylor, M. J. Mass drug treatment for lymphatic filariasis and onchocerciasis. Trends Parasitol 19, 516–522 (2003).

    Google Scholar 

  50. Cano, J. et al. Identifying co-endemic areas for major filarial infections in sub-Saharan Africa: seeking synergies and preventing severe adverse events during mass drug administration campaigns. Parasit Vectors 11, 70 (2018).

    Google Scholar 

  51. Chesnais, C. B. et al. Individual risk of post-ivermectin serious adverse events in subjects infected with Loa loa. EClinicalMedicine 28, 100582 (2020).

    Google Scholar 

  52. Forrer, A. et al. Why onchocerciasis transmission persists after 15 annual ivermectin mass drug administrations in South-West Cameroon. BMJ Glob Health 6, e003248 (2021).

    Google Scholar 

  53. Expanded Special Project for the Elimination of Neglected Tropical Diseases (ESPEN) (2021). https://espen.afro.who.int/diseases/lymphatic-filariasis (Accessed 13 February 2026).

  54. Expanded Special Project for the Elimination of Neglected Tropical Diseases (ESPEN) (2021). https://espen.afro.who.int/diseases/loiasis (Accessed 13 February 2026).

  55. Zouré, H. G. M. et al. The geographic distribution of Loa loa in Africa: results of large-scale implementation of the Rapid Assessment Procedure for Loiasis (RAPLOA). PLoS Negl Trop Dis 5, e1210 (2011).

    Google Scholar 

  56. Vinkeles Melchers, N. V. S. et al. Projected number of people with onchocerciasis-loiasis coinfection in Africa, 1995 to 2025. Clin Infect Dis 70, 2281–2289 (2020).

    Google Scholar 

  57. Wanji, S. Rapid assessment procedures for loiasis: Report of a multi-centre study. UNDP/World Bank/WHO Special Programme for Research & Training in Tropical Diseases, TDR/IDE/RP/RAPL/01.1, Geneva (2001). https://fctc.who.int/resources/publications/i/item/rapid-assessment-procedures-for-loiasis-report-of-a-multi-centre-study (Accessed 13 February 2026).

  58. Takougang, I. et al. Rapid assessment method for prevalence and intensity of Loa loa infection. Bull World Health Organ 80, 852–858 (2002).

    Google Scholar 

  59. Dixon, M. A. & Basáñez, M.-G. HISTONCHO: a dataset of intervention histories for onchocerciasis control and elimination in sub-Saharan Africa. https://zenodo.org/records/15390119 (2026).

  60. Boussinesq, M. & Gardon, J. Prevalences of Loa loa microfilaraemia throughout the area endemic for the infection. Ann Trop Med Parasitol 91, 573–589 (1997).

    Google Scholar 

  61. Vinkeles Melchers, N. V. S. et al. Impact of ivermectin and vector control on onchocerciasis transmission in Togo: assessing the empirical evidence on trends in infection and entomological indicators. PLoS Negl Trop Dis 18, e0012312 (2024).

    Google Scholar 

  62. Amaral L.-J. et al. Reaching elimination of onchocerciasis transmission with long-term vector control and ivermectin treatment in Togo. Nat Commun 17, 779 (2025).

  63. Katabarwa, M. N. et al. The Galabat-Metema cross-border onchocerciasis focus: the first coordinated interruption of onchocerciasis transmission in Africa. PLoS Negl Trop Dis 14, e0007830 (2020).

    Google Scholar 

  64. Ng, C. W., Maddren, R. & Anderson, R. M. Challenges in assessing the impact of infection and disease control interventions over the past decade based on the Expanded Special Project for the Elimination of Neglected Topical Diseases (ESPEN) database. Trans R Soc Trop Med Hyg 119, 767–770 (2025).

  65. World Health Organization. Guidelines for stopping mass drug administration and verifying elimination of human onchocerciasis: criteria and procedures. Geneva, Switzerland (2016). https://iris.who.int/handle/10665/204180 (Accessed 13 February 2026).

  66. World Health Organization, Mectizan Donation Program, Coalition for Operational Research on Neglected Tropical Diseases. Loa Expert Committee Meeting. Meeting Report. 28-30 August 2024. Paris, France (2024). https://www.cor-ntd.org/sites/default/files/content/document/Loa%20Loa%20Expert%20Committee%20Meeting%20Report_AUG2024_FINAL.pdf (Accessed 13 February 2026).

  67. World Health Organization. WHO Onchocerciasis Technical Advisory Subgroup: report of the seventh meeting, Saly, Senegal, 4 November 2023. Geneva: World Health Organization (2024). https://www.who.int/publications/i/item/9789240098848 (Accessed 13 February 2026).

  68. Niamsi-Emalio, Y. et al. Model-based geostatistical mapping of the prevalence of Onchocerca volvulus in Cameroon between 1971 and 2020. PLoS Negl Trop Dis 19, e0012250 (2025).

    Google Scholar 

  69. Dyson, L., Stolk, W. A., Farrell, S. H. & Hollingsworth, T. D. Measuring and modelling the effects of systematic non-adherence to mass drug administration. Epidemics 18, 56–66 (2017).

    Google Scholar 

  70. Cheke, R. A., Fiasorgbor, G. K., Walsh, J. F. & Yameogo, L. Elimination of the Djodji form of the blackfly Simulium sanctipauli sensu stricto as a result of larviciding by the WHO Onchocerciasis Control Programme in West Africa. Med Vet Entomol 22, 172–174 (2008).

    Google Scholar 

  71. World Health Organization & Onchocerciasis Control Programme in West Africa. Onchocerciasis control in Benin: achievements and prospects after OCP (2002). https://iris.who.int/handle/10665/342974 (Accessed 13 February 2026).

  72. Koala, L. et al. Recrudescence of onchocerciasis in the Comoé valley in Southwest Burkina Faso. Acta Trop 166, 96–105 (2017).

    Google Scholar 

  73. World Health Organization, Onchocerciasis Control Programme in West Africa & Dadzie, H. Y. Onchocerciasis in the forest area of Côte d’Ivoire (1986). https://iris.who.int/handle/10665/340019 (Accessed 13 February 2026).

  74. World Health Organization & Onchocerciasis Control Programme in West Africa. Onchocerciasis control in Côte d’Ivoire: achievements and prospects after OCP (2002). https://iris.who.int/handle/10665/342978 (Accessed 13 February 2026).

  75. Koudou, B. G. et al. Update on the current status of onchocerciasis in Côte d’Ivoire following 40 years of intervention: progress and challenges. PLoS Negl Trop Dis 12, e0006897 (2018).

    Google Scholar 

  76. World Health Organization & Onchocerciasis Control Programme in West Africa. Onchocerciasis control in Ghana: achievements and prospects after OCP (2002). https://iris.who.int/handle/10665/342980 (Accessed 13 February 2026).

  77. Turner, H. C. et al. The cost of annual versus biannual community-directed treatment of onchocerciasis with ivermectin: Ghana as a case study. PLoS Negl Trop Dis 7, e2452 (2013).

    Google Scholar 

  78. Frempong, K. K. et al. Does increasing treatment frequency address suboptimal responses to ivermectin for the control and elimination of river blindness? Clin Infect Dis 62, 1338–1347 (2016).

    Google Scholar 

  79. Biritwum, N.-K. et al. Onchocerciasis control in Ghana (1974–2016). Parasit Vectors 14, 3 (2021).

    Google Scholar 

  80. Lamberton, P. H. L. et al. Onchocerciasis transmission in Ghana: biting and parous rates of host-seeking sibling species of the Simulium damnosum complex. Parasit Vectors 7, 511 (2014).

    Google Scholar 

  81. World Health Organization & Onchocerciasis Control Programme in West Africa. Onchocerciasis control in Guinea: achievements and prospects after OCP (2002). https://iris.who.int/handle/10665/342983 (Accessed 13 February 2026).

  82. Guillet, P. et al. Impact of combined large-scale ivermectin distribution and vector control on transmission of Onchocerca volvulus in the Niger basin, Guinea. Bull World Health Organ 73, 199–205 (1995).

    Google Scholar 

  83. World Health Organization & Onchocerciasis Control Programme in West Africa. Onchocerciasis control in Guinea-Bissau: achievements and prospects after OCP (2002). https://iris.who.int/handle/10665/342981 (Accessed 13 February 2026).

  84. Boakye, D. et al. Refocusing vector assessment towards the elimination of onchocerciasis from Africa: a review of the current status in selected countries. Int Health 10(Suppl 1), i27–i32 (2018).

    Google Scholar 

  85. World Health Organization & Onchocerciasis Control Programme in West Africa. Onchocerciasis control in Mali: achievements and prospects after OCP (2002). https://iris.who.int/handle/10665/342985 (Accessed 13 February 2026).

  86. Dolo, H. et al. Progress towards elimination of onchocerciasis transmission in Mali: a “pre-stop MDA” survey in 18 transmission zones. PLoS Negl Trop Dis 17, e0011632 (2023).

    Google Scholar 

  87. World Health Organization & Onchocerciasis Control Programme in the Volta River Basin Area. Senegambia project: onchocerciasis control in Guinea, Guinea-Bissau, Mali, Senegal and Sierra Leone: annex X, budget (1981). https://iris.who.int/handle/10665/325465 (Accessed 13 February 2026).

  88. World Health Organization & Onchocerciasis Control Programme in West Africa. Progress report on the implementation of transfer activities of the Onchocerciasis Control Programme. Senegal, 1 September 1997–31 August 1998 (1988). https://iris.who.int/handle/10665/311254 (Accessed 13 February 2026).

  89. World Health Organization & Onchocerciasis Control Programme in West Africa. Onchocerciasis control in Sierra Leone: achievements and prospects after OCP (2002). https://iris.who.int/handle/10665/342990 (Accessed 13 February 2026).

  90. Kargbo-Labour, I. et al. Impact assessment of onchocerciasis through lymphatic filariasis transmission assessment surveys using Ov-16 rapid diagnostic tests in Sierra Leone. Parasit Vectors 17, 121 (2024).

    Google Scholar 

  91. Koroma, J. B. et al. Impact of five annual rounds of mass drug administration with ivermectin on onchocerciasis in Sierra Leone. Infect Dis Poverty 7, 30 (2018).

    Google Scholar 

  92. World Health Organization & Onchocerciasis Control Programme in West Africa. Onchocerciasis control in Togo: achievements and prospects after OCP (2002). https://iris.who.int/handle/10665/342991 (Accessed 13 February 2026).

Download references

Acknowledgements

This work was supported by the Bill & Melinda Gates Foundation (now Gates Foundation) through the NTD Modelling Consortium (INV-030046). M.A.D. and M.-G.B. acknowledge funding from the MRC Centre for Global Infectious Disease Analysis (MR/X020258/1), funded by the UK Medical Research Council (MRC). This UK-funded award is carried out in the frame of the Global Health EDCTP3 Joint Undertaking. We wish to thank Dr Renata Retkute for her assistance in identifying annual and biannual treatment frequencies in Ethiopia, and Dr Mutono Nyamai for her help in identifying foci across sub-Saharan Africa for which elimination of onchocerciasis transmission has been reported.

Author information

Authors and Affiliations

  1. MRC Centre for Global Infectious Disease Analysis, and London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, 90 Wood Lane, London, W12 0BZ, UK

    Matthew A. Dixon, Martin Walker & Maria-Gloria Basáñez

  2. Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK

    Martin Walker & Aditya Ramani

  3. The Carter Center, One Copenhill, 453 John Lewis Freedom Parkway NE, Atlanta, GA, 30307-1406, USA

    Jenna E. Coalson, Emily Griswold & Gregory S. Noland

  4. Sightsavers, 35 Perrymount Road, Haywards Heath, RH16 3BW, UK

    Andrew Tate

  5. Federal Ministry of Health & Social Welfare, Federal Republic of Nigeria, Federal Secretariat Complex, Phase III, Shehu Shagari Way, Central Business District, FCT, Abuja, Nigeria

    Emeka Makata

  6. Republic of the Sudan Federal Ministry of Health, P.O. Box 303, Khartoum, Sudan

    Ahmed M. A. Ali

  7. Expanded Special Project for Elimination of Neglected Tropical Diseases (ESPEN), World Health Organization Regional Office for Africa (AFRO), Brazzaville, Republic of Congo

    Jorge Cano

  8. Epi Interventions Ltd, White Lodge Pencaitland, Tranent, EH34 5BQ, UK

    Paul Bessell

  9. Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster University, Lancaster, LA1 4YW, UK

    Claudio Fronterrè

  10. Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK

    Raiha Browning

  11. Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands

    Wilma A. Stolk

Authors
  1. Matthew A. Dixon
    View author publications

    Search author on:PubMed Google Scholar

  2. Martin Walker
    View author publications

    Search author on:PubMed Google Scholar

  3. Aditya Ramani
    View author publications

    Search author on:PubMed Google Scholar

  4. Jenna E. Coalson
    View author publications

    Search author on:PubMed Google Scholar

  5. Emily Griswold
    View author publications

    Search author on:PubMed Google Scholar

  6. Gregory S. Noland
    View author publications

    Search author on:PubMed Google Scholar

  7. Andrew Tate
    View author publications

    Search author on:PubMed Google Scholar

  8. Emeka Makata
    View author publications

    Search author on:PubMed Google Scholar

  9. Ahmed M. A. Ali
    View author publications

    Search author on:PubMed Google Scholar

  10. Jorge Cano
    View author publications

    Search author on:PubMed Google Scholar

  11. Paul Bessell
    View author publications

    Search author on:PubMed Google Scholar

  12. Claudio Fronterrè
    View author publications

    Search author on:PubMed Google Scholar

  13. Raiha Browning
    View author publications

    Search author on:PubMed Google Scholar

  14. Wilma A. Stolk
    View author publications

    Search author on:PubMed Google Scholar

  15. Maria-Gloria Basáñez
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualisation: M.A.D., M.W. and M.-G.B. Data curation: M.A.D. Formal analysis: M.A.D., M.W. and A.R. Funding acquisition: M.W. and M.-G.B. Investigation: M.A.D., J.E.C., C.F. and M.-G.B. Methodology: M.A.D., M.W. and M.-G.B. Resources: J.E.C., E.G., G.S.N., A.T., E.M., A.M.A.A., J.C., P.B., R.B., W.A.S. and M.-G.B. Software: M.A.D. and A.R. Supervision: M.W. and M.-G.B. Validation: M.A.D., M.W., A.R. W.A.S. and M.-G.B. Visualisation: M.A.D. Writing – original draft: M.A.D., M.W. and M.-G.B. Writing – review & editing: M.A.D., M.W., A.R., J.E.C., E.G., G.S.N., A.T., E.M., A.M.A.A., J.C., P.B., C.F., R.B., W.A.S. and M.-G.B.

Corresponding authors

Correspondence to Matthew A. Dixon or Maria-Gloria Basáñez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixon, M.A., Walker, M., Ramani, A. et al. HISTONCHO: A dataset of intervention histories for onchocerciasis control & elimination in sub-Saharan Africa. Sci Data (2026). https://doi.org/10.1038/s41597-026-06852-w

Download citation

  • Received: 20 May 2025

  • Accepted: 06 February 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06852-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing