Table 5 Maximum classification accuracy values for the different combinations of classifiers and types of features.
Volume | Thickness | Roughness | All | |||||
---|---|---|---|---|---|---|---|---|
Accuracy | Number of features used | Accuracy | Number of features used | Accuracy | Number of features used | Accuracy | Number of features used | |
Naive Bayes | 0.6944 | 19 | 0.6944 | 37 | 0.8056 | 10 | 0.8056 | 62 |
Support Vector Machine | 0.7500 | 31 | 0.6944 | 23 | 0.6667 | 36 | 0.5833 | 62 |
Rule | 0.6667 | 26 | 0.7500 | 8 | 0.8056 | 36 | 0.6111 | 14 |
K-Nearest Neighbor | 0.7222 | 6 | 0.7222 | 17 | 0.6667 | 33 | 0.7222 | 14 |
Artificial Neural Network | 0.7500 | 6 | 0.6389 | 28 | 0.7222 | 10 | 0.7500 | 67 |
Average | 0.7167 | 17.60 | 0.70 | 22.60 | 0.7333 | 25.00 | 0.6944 | 43.80 |
Standard deviation | 0.0362 | 11.4149 | 0.0412 | 10.9681 | 0.0697 | 13.7477 | 0.0942 | 27.280 |