Table 2 Projection of the Eigenvectors.

From: Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond

Eigenvector

MW channel

MW length

(1 0 0)1

MW 0

0

(0 1 0)

MW 0

Ï€

(0 0 1)

MW 2

Ï€

(0 \(\sqrt{0.5}\) \(\sqrt{0.5}\))

MW 2 , MW 0

Ï€, 1.5Ï€

(0 \(\sqrt{0.5}\) \(-\sqrt{0.5}\))

MW 2 , MW 0

Ï€, 0.5Ï€

(\(\sqrt{0.1}\) \(i\sqrt{0.9}\) 0)

MW 1

1.9Ï€

(\(\sqrt{0.9}\) \(-i\sqrt{0.1}\) 0)

MW 1

0.1Ï€

(\(\sqrt{0.2}\) \(i\sqrt{0.8}\) 0)

MW 1

1.8Ï€

(\(\sqrt{0.8}\) \(-i\sqrt{0.2}\) 0)

MW 1

0.2Ï€

(\(\sqrt{0.3}\) \(i\sqrt{0.7}\) 0)

MW 1

1.7Ï€

(\(\sqrt{0.7}\) \(-i\sqrt{0.3}\) 0)

MW 1

0.3Ï€

(\(\sqrt{0.4}\) \(i\sqrt{0.6}\) 0)

MW 1

1.6Ï€

(\(\sqrt{0.6}\) \(-i\sqrt{0.4}\) 0)

MW 1

0.4Ï€

(\(\sqrt{0.5}\) \(i\sqrt{0.5}\) 0)

MW 1

1.5Ï€

(\(\sqrt{0.5}\) \(-i\sqrt{0.5}\) 0)

MW 1

0.5Ï€

(\(\sqrt{0.5}\) 0 \(i\sqrt{0.5}\))

MW 2

1.5Ï€

(\(\sqrt{0.5}\) 0 \(-i\sqrt{0.5}\))

MW 2

0.5Ï€

  1. 1The vector (α, β, γ) stands for α|0〉 + β|−1〉 + γ|+1〉. Each projection process is carried out by MW pulses from left to right with MW lengths listed behind.