Figure 4
From: A Central Small Amino Acid in the VAMP2 Transmembrane Domain Regulates the Fusion Pore in Exocytosis

The VV mutation in VAMP2 TMD modifies the fluidity of the membrane. Viscosity of model membranes were imaged by ellipsometry in a Langmuir through using DMPC membranes and either VAMP2 WT or VAMP2 VV full-length recombinant protein. (a) Representative images from DMPC model membranes mixed with the indicated mutant (1/50 nominal peptide/lipid ratio) obtained by ellipsometry in a Langmuir trough. Images were taken at initial low lateral pressure (left panel), at maximal lateral pressure (middle panel) and after relaxation (to low pressure, right panel). Measured lateral pressures are given at the bottom left corner of each image (mN/m). For VAMP2 WT, during the increase of the lateral pressure, the DMPC membrane evolves from homogenous monolayer to a monolayer bearing distinctive domains of different thickness (clear and dark zones). At the maximal pressure (36 mN/m), the patterns (round shapes, no sharp angles) indicate regions of great fluidity. By decompressing the system, the membrane returns fully to its original homogeneity. By contrast, an increase of the lateral pressure on membrane containing VV leads to the formation of ‘jagged’ patches with many sharp angles, a mark of membrane rigidity (28 mN/m). These changes persist upon decompression. (b) Quantification of fractional dimension of images obtained in ellipsometry by using the box counting dimension (mean DB, a logarithmic factor which varies between 1 and 2). Mean ± S.E.M., n = 6; **2p < 0.01 (t-test).