Table 3 Our model achieves the state-of-the-art accuracy (%) in the binary classification task.
From: Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model
Accuracy at | Methods | Magnification factors | |||
---|---|---|---|---|---|
40X | 100X | 200X | 400X | ||
Image level | AlexNet17 | 85.6 ± 4.8 | 83.5 ± 3.9 | 83.1 ± 1.9 | 80.8 ± 3.0 |
CSDCNN | 95.8 ± 3.1 | 96.9 ± 1.9 | 96.7 ± 2.0 | 94.9 ± 2.8 | |
Patient level | PFTAS + QDA12 | 83.8 ± 4.1 | 82.1 ± 4.9 | 84.2 ± 4.1 | 82.0 ± 5.9 |
PFTAS + SVM12 | 81.6 ± 3.0 | 79.9 ± 5.4 | 85.1 ± 3.1 | 82.3 ± 3.8 | |
GLCM + 1-NN12 | 74.7 ± 1.0 | 76.8 ± 2.1 | 83.4 ± 3.3 | 81.7 ± 3.3 | |
PFTAS + RF12 | 81.8 ± 2.0 | 81.3 ± 2.8 | 83.5 ± 2.3 | 81.0 ± 3.8 | |
AlexNet17 | 90.0 ± 6.7 | 88.4 ± 4.8 | 84.6 ± 4.2 | 86.1 ± 6.2 | |
CSDCNN | 97.1 ± 1.5 | 95.7 ± 2.8 | 96.5 ± 2.1 | 95.7 ± 2.2 |