Table 3 The searching range of optimal γ for each non-convex penalty.
From: Pattern Discovery in Brain Imaging Genetics via SCCA Modeling with a Generic Non-convex Penalty
\({\ell }_{\gamma }\)-norm | SCAD | Geman, Laplace, MCP | ETP, Log | |
---|---|---|---|---|
Range of γ | 0.1, 0.2, 0.3 | 3.7 | 0.1, 0.01, 0.001 | 10, 100, 1000 |