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QED cascade with 10 PW-class
lasers
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The intensities of the order of 1023-W/cm? are required to efficiently generate electron-positron pairs

. in laser-matter interaction when multiple laser beam collision is employed. To achieve such intense laser

Accepted: 25 October 2017 - fields with the upcoming generation of 10 PW laser beams, focusing to sub-micron spot size is required.

Published online: 10 November 2017 : Inthis paper, the possibility of pair production cascade development is studied for the case of a standing

. wave created by two tightly focused colliding laser pulses. Even though the stronger ponderomotive

force expels the seed particles from the interaction volume when a tightly focused laser beam is used,
tight focusing allows to achieve cascade pair production due to the higher intensity in the focal spot.
Optimizing the target density can compensate the expulsion by the ponderomotive force and lower the
threshold power required for cascade pair production. This will in principle allow to produce pairs with
10 PW-class laser facilities which are now under construction and will become accessible soon.
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With PW class laser facilities! it is nowadays possible to achieve intensities of the order of 10?2 W/cm? Due to
the continuing development in laser technology, 10 PW laser facilities come into operation in the next few years.
These facilities>* are expected to reach intensities of the order of 10%*-* W/cm? With such powerful laser sys-
tems, quantum electrodynamics (QED) effects start to manifest themselves in laser-matter interaction during the
experiments (see ref.” for an overview). In such an intense laser field, the radiation reaction force can strongly
influence the interaction of a laser beam with matter since this effect reduces the energy of emitting particles
and transforms their energy into gamma radiation®®. Consequently, the emitted photons interacting with the
strong laser field can create electron-positron pairs via the Breit-Wheeler process (BW)°. If the newly created
BW electron or positron interacts with the strong electromagnetic (EM) field, the process of photon emission
and pair creation can repeat itself, and thus a cascade pair production can develop. The increase in the number of
generated pairs can lead to the depletion of the laser pulse!®!!,

Electron-positron pairs can be generated in a standing wave formed by two colliding laser pulses when a seed-
ing particle is placed into the interaction region'2. The efficiency of pair production depends not only on the laser
intensity, but also on polarization and on the cascade seeding. It has been found that linear polarization is more
efficient in the case of non-ideal seeding of the cascade, therefore we focus on linearly polarized laser beams'*-'°.
This configuration has been so far studied in terms of linearly polarized plane waves or focused paraxial beams
which can not be applied in the case of tight focusing (w, < A) even if higher-order terms of the expansion
parameter 0 = wy/zy = M/ (7w,) are employed'®. Here, w, stands for the focal spot radius, \ is the laser wavelength
and zz =7w,/\ is the Rayleigh length. The parameter 6 closely approximates the beam diffraction angle!”.
Nevertheless, due to the necessity to achieve laser intensities of the order of 10** W/cm?, the laser beam has to be
focused to a A scale spot size, i.e. beyond the validity of the paraxial approximation. It is therefore important to
use an appropriate model that can accurately describe a tightly focused laser beam. The interaction under
tight-focusing undergoes additional effects (i.e. development of parallel electric field, pulse shortening'’) that are
not encountered in simulations within the paraxial approximation. The focusing to a wavelength scale focal spot
can be realized by the combination of an off-axis parabolic mirror and an ellipsoidal plasma mirror®.

It has been reported" that in the interaction of tightly-focused laser beams with a low-density target, electrons
are expelled from the focal volume due to the strong ponderomotive force that prevents cascade development
even at very high laser intensities of the order of 10 W/cm?. Employment of multiple colliding laser beams
leads not only to lowering the required power but also ensures more efficient seeding of the QED cascade'***-22,
Since the effect of target density has not been taken into account in previous studies, we study the interaction of
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two colliding laser pulses with an electron cloud in the case of tightly-focused laser beams for a wide range of
target densities and various focal spot sizes in order to find the threshold for cascade pair production in such a
configuration. It is shown that in the case of properly chosen target density, tight focusing allows to achieve the
cascade generation of electron-positron pairs even at 10 PW-class laser facilities. The power is similar to what
was considered in ref.?2. However, we show that a high density is required in case of a complete simulation of the
interaction dynamics.

To characterize the interaction of a charged particle with strong EM fields, two invariant and dimensionless
parameters are used. The EM field can be described by the normalised vector potential a, = eE/m,w,c, where e
is the elementary charge, E; is the amplitude of the EM field strength, m, is the mass of electron, wj is the laser
frequency and c is the speed of light®. As soon as a,> 1, the electron motion starts to be relativistic**. The inter-
action of a charged particle (photon) with EM field is characterized by the parameter x, = [|(E,p, Y12 Im,cE
(Xv [I(E,, 7k P12 ImcEg), where Eg = m’c’/eh ~ 1.3 x 10'®V/m is the Schwinger limit ﬁeld I is the Planck
constant, and F,,, is the EM field tensor**?**. Electron and photon four-momentum are expressed as p, and fik,,
respectively. For X, < 1, the emission of photons is modeled as a continuous process of losing energy™. If y, = 1,
emitted photons carry a large fraction of the particle’s energy and the radiation reaction has to be modeled as a
step-like quantum process”. While for y < 1 the rate of pair creation is exponentially small*’, for  , x_ > 1,
the interaction leads to an avalanche, i.e. the exponential growth of the electron, positron and photon numbers'!.
We define a threshold for the cascade pair production when at least one electron-positron pair per seed particle is
created (same as in ref.'?).

Results

We performed 2D simulations with the particle-in-cell code EPOCH to study the effect of tight focusing and
initial target density on cascade pair production efficiency. The target consisting of an electron cloud and immo-
bile ions is irradiated by two counter propagating laser pulses. The target is initially neutral as the immobile ions
provide a background neutralizing the electron cloud.

The circular target, whose radius is equal to the focal spot radius wy, is placed in the center of the simulation box at
x=y=0pm. Itis located in the common focal spot of the two colliding laser beams. They propagate along the x-axis
while being polarized along the y-direction. To describe the EM field of a tightly focused, p-polarized laser pulse we
used the EM field expressions published in ref.?® (see Methods). Both laser pulses have the wavelength A=1 ym and
a Gaussian temporal profile. The full width at half maximum (FWHM) duration is 30fs. Laser beams were focused to
a focal spot of radius w,=0.5 um — 2 zm. We study pair production for a wide range of initial target density #, going
from 0.01n,to 500n,, wheren, = mesowozl e is the critical electron density and , is the vacuum permitivity.

As the laser pulses collide, they form a standing wave. The development of a cascade pair production strongly
depends on efficient seeding, thus for seed particles it is crucial to stay in the focal spot region (i.e. within the
distance of w, from the origin) till the highest intensity of the standing wave is established. However, as the laser
pulse is focused more tightly, the ponderomotive force becomes stronger and seed particles are expelled more
rapidly, so the focusing acts against an efficient cascade seeding.

Nevertheless, this unwanted effect can be overcome by increasing the target density. There exists an optimal
target density at which radiation pressure due to the laser photons is compensated by the electrostatic field, so that
seed particles are not expelled and remain in the high-field region, and thus pair production efficiency is the high-
est. We can estimate the optimal target density for a simplified case assuming that seed particles are located in a
circular target having the radius equal to the focal spot radius wy, and laser pulses propagate along the x-axis while
the ponderomotive force expels seed particles in the y-direction. The radiation pressure along the y-axis, which is
caused by the laser beam, can be expressed as P,,; = (1 + R — T)g(E,B,c/2, where R and T stand for reflectivity
and transmissivity, respectively. Let us assume that electrons are pushed away along the y-axis to the distance of L
and create the electrostatic field E,; = en,L/c. The distance L is chosen as L =w,/2 since at this point the radiation
pressure along the y-direction is maximal. Assuming that the radiation pressure P,,,; is compensated by the pres-
sure of the electrostatic field P, = ¢,E2/2 at the distance L, we obtain an estimate of the optimal target density as

e 2

ot 8+2I)(1 + R — T)
mexp(1)wykoce ' (1)

where I, is the total intensity and k= 27/\. It gives the value n?* = 112n, for the interaction of two 5 PW beams
(ay=963) focused to w,= 0.5 um assuming the ideal case when no laser energy is reflected. The coefficient T has
been set as a mean value of transmission obtained from simulations forn, = 0.01n, — 500#,. The calculated opti-
mal target density n*" is in a good agreement with the value of 100n, which was obtained from the simulation.
The pair production efficiency is also affected by the relativistic critical plasma density 1., = yn, during the
simulation'®?. Above the threshold for cascade pair production the target becomes opaque for the i incoming laser
pulses if the density of the seed and the newborn particles is too high. Since two linearly polarized laser beams are
used, the relativistic critical plasma density scalesasn,, ~ (1 + a, 4l . In the collision of two 5 PW beams focused
to wy=0.5 um, each beam has the intensity I = 1.27 x 10% W/ e’ (a,=963) in the focal spot. The relativistic
critical plasma density is achieved when the initial target density is 125n,. Therefore, the standing wave can not
develop for targets having higher initial density. The laser intensity is always deﬁned as the intensity in the focal spot.
The effect of target density on expelling the seed particles from focal spot region is illustrated in Fig. 1a for the
case of wy=0.5 um and I =1 x 10**W/cm? (a,= 854). It shows the number of seed electrons N within the dis-
tance of w, from the origin for the case of three different target densities (0.01#,, 0.1n, and 100n,) when immobile
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Figure 1. Number of seed particles N within the distance w, from x=y=0. (a) The effect of initial target
density and ions contained in the target for w, = 0.5 um. (b) The effect of focal spot radius w;, for n,=100n,.
Gray line represents the amplitude of the standing wave. Data are calculated for threshold intensities:

1.0 X 10?*W/cm? for wy= 0.5 um (a, = 854) and 6.3 x 102*W/cm? for wy= 1.5 um (a,= 678). The number of
particles N is normalized to the total sum of seed particles Ny, time ¢ is expressed in units of the laser period T.
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Figure 2. Number of BW pairs Ny, per one seed particle for two- (cyan) and four-beam (magenta) collision
with a target of varying density. The overall laser power of 10 PW is divided into the corresponding beams
focused to wy,=0.5 pm.

ions are used. It also shows the situation for density 100#, and ions with Z/A = 1/2 where Z is the atomic number
and A is the mass number. This will be discussed in the next section.

When the target density is very low, seed particles escape the focal spot region even before the laser pulses
arrive. That prevents the cascade developing even at very high laser intensities'®. As we increase the target density
(compare cases for 0.017, and 0.1x,), more seed particles experience the field of the formed standing wave. When
the optimal target density is used (100#,), a significant fraction of seed particles stay in the focal spot region till the
main part of laser pulses comes, and, therefore, the pair production can develop. As the standing wave gets created,
the target is compressed at first. Then the seed particles are rearranged into the positions of electric field nodes of
the arising standing wave'®. During this process, the seed particles can be pushed away from the focal spot region
and then, as they are attracted to the electric field nodes, come back to this area. Therefore, the abrupt increase in
the lines for 0.1n, and 100#, arises. The situation for targets of higher density will be discussed later in this section.

Figure 1b is showing the situation in the case of threshold intensities for cascade pair production at n,= 100,
when laser pulses are focused to w,=0.5 um and w,= 1.5 um and immobile ions are used. The corresponding
laser intensity for each beam are 1 x 10*W/cm? (a,=854) and 6.3 x 102 W/cm? (a,= 678), respectively. Faster
expulsion of seed particles from the focal spot area is observed in the case of tight focusing. Nevertheless, the
higher intensity achieved with tight focusing compensates for the smaller interaction volume, and, therefore,
cascade pair production can be launched by only a fraction of initial seed particles provided they pass through
the strong-field region of the standing wave. As a result, seed particles achieve higher values of the x, parameter,
enhance photon emission, and, consequently, pair production. Moreover, tight focusing requires less laser power
to initiate the pair production provided that the target density is properly chosen.

The ratio of newly created pairs Ny, to the number of seed particles N, for different target densities is given in
Fig. 2 for collision of two beams (2 x 5PW) focused to w,= 0.5 um. The efficiency of pair production grows with
increasing target density up to the optimal target density 1007, at which the ratio is the highest, 1.9, which corre-
sponds to 1.7 x 10Y created BW pairs. Going to higher target densities, the pair production efficiency decreases.
As reported in refs'®? once a sufficient number of BW pairs are created, the relativistic critical plasma density can
be reached during the interaction such that a fraction of the laser gets reflected. As a result, the standing wave is
not established in the focal plane (see Fig. 3a,b). On the other hand, in the case of the optimal target density, the
structure of the standing wave is not disturbed. As a consequence, particles in the vicinity of the focal spot acquire
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Figure 3. Distribution of BW electrons in the standing wave in the case of initial target density (a) 1007, and
(b) 300n..

2 107" 10° 10 10

n/n
e C

Figure 4. The minimal required laser power P per beam that enables to achieve the threshold of cascade pair
production for the given focal spot radius w, and target density #,.

higher values of X, gy in comparison to the case when the laser beam is reflected from the relativistic critical sur-
face of the compressed target. Since the optimal target density allows the standing wave to fully develop, emitted
photons can experience the stronger EM field that leads to higher values of the ., parameter. This results in a
more efficient pair production.

Discussion

The results of our simulations are summarized in Fig. 4, showing the required laser power threshold P per one
beam for cascade pair production in the case of w,= 0.5 yum-2 m and target densities n,=0.01n,-200#,. For a
fixed beam power, there exists a set of values w, and n,/n,, at which the threshold for cascade pair production
can be achieved. From the simulations follows that upcoming 10 PW (2 x 5PW) laser facilities will require tight
focusing of short laser pulses below w, = 0.6 ;um to initiate cascade pair production while the initial target density
should be approximately 100#.. For example, in the case of w, = 0.5 yum, two 4 PW laser beams are needed to
launch the cascade pair production. Both, the tight focusing and high-density target have to be used in this case.
By contrast, this is not required in the case of a more powerful laser system. When several tens of PW laser power
are available, the cascade pair production can be achieved for tight focusing and a low-density target as well as for
the case when both, target density and the focal spot radius, are increased. By increasing the target density, the
requirements for the cascade development can be reduced by 50% for a given focal spot radius w,. As shown in
Table 1, as the spot size grows, more laser power is required for cascade pair production despite the fact that the
threshold intensity declines. Using longer laser pulses should lead to a more efficient pair production, however
the effect of laser field depletion and reflection become more significant since a high-density electron-positron
plasma would be created. Nevertheless, the threshold power and intensity would be reduced as the cascade will
have more time to develop.

In our simulations we assumed perfect timing and alignment of the colliding laser pulses. To assess the influ-
ence of non-ideal configuration of the interaction, we performed simulations for the case when two 5 PW laser
pulses (a, =963, w,=0.5 um) interact with a target of density 1007, while the laser pulses were not perfectly
aligned. We induced a shift / of the second laser beam axis along the y-direction. The values of pair production
efficiency for these non-ideal cases are shown in Table 2. We also assess the role of phase synchronization in
perfectly aligned laser collision. In the case when the laser pulses have the opposite phase, the pair production
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Wo(pm) a, P(PW) I(W/cm?) n/n,
0.5 854 39 1.0 x 10* 100
1.0 730 11.5 7.3 x 10% 75
1.5 667 215 6.1x 10% 50
2.0 634 345 5.5x10% 40

Table 1. Threshold intensity I, power P and the normalised vector potential a, of one beam focused to w, and
the corresponding initial target density n, required to launch the cascade pair production. The wavelength of the
laser beam is A=1 pum.

1 Ngw/No
0 1.94
wol3 1.09
2wy/3 0.95
W, 0.06

Table 2. Number of newborn electron-positron pairs per one seed particle for the collision of two 5 PW laser
pulses (a,= 963, w,=0.5 um) with a target of density 100, when the laser axis of the second beam is shifted by
a distance of  in the y-direction.

efficiency drops only by 9%. Despite the fact that amplitude of the standing wave is not established in the center of
simulation box in this case, particles are pushed by the ponderomotive force to the position of electric field nodes
where they emit. Therefore, the alignment of collision has a higher impact on pair production efficiency than the
phase synchronization of the colliding laser pulses. As is shown in Table 2, pair production efficiency drops by
almost 50% when the displacement of colliding laser beams by 2w,/3 is induced along the y-direction.

We compare pair production efficiency in the case where 10 PW laser beam is divided into two (2 x 5PW,
a=963) or four (4 x 2.5PW, a,=684) tightly-focused (w,=0.5 um) colliding laser beams. Polarization and laser
pulse duration remain the same as in the previous case. In the four-beam collision, the target is symmetrically irra-
diated by laser pulses propagating along the x and y axes, thus, the two-dimensional standing wave is set up!>*>3,
We found that there is no big difference in the number of generated electron-positron pairs in these two interac-
tions for any of the initial target densities (see Fig. 2). Therefore, in contrast to the focusing within paraxial approx-
imation, the benefit of more robust seeding in the collision of four tightly-focused laser beams is not evident.
For comparison, the threshold of the cascade pair production requires 10 PW for each of four laser beams when
wo= 1.5 um. This is equal to the overall laser power needed for achieving pair production in the case of two or four
colliding laser beams when w, = 0.5 pum. This favours tight focusing regardless of the number of colliding laser
beams since it requires less power and allows development of cascade pair production even for a two-beam setup.

To assess the role of ions on pair production efficiency, we performed simulations where two laser beams
(2 x 5PW, a,=963, w,=0.5 um) interact with a target of density 100x, composed of electrons and mobile ions
with Z/A=1/2. As shown in Fig. la, three times lower number of seed particles can experience the amplitude of
the formed standing wave in comparison with the case of immobile ions when the same target density is used.
This is due to the fact that the whole target expands and the seed particles are not confined to the very small inter-
action volume so efficiently. The resulting number of created BW pairs is then three times lower. Nevertheless,
when a different shape of target is used, we can obtain the similar number of pairs as in the case of circular target
with immobile ions. For example, if laser pulses are incident on a 1 ym thick flat foil target that includes electrons
and ions with Z/A = 1/2, the absolute number of generated pairs is only by 2% lower than in case of circular target
with immobile ions while both targets are having the optimal density.

In order to check the validity of our results and get more realistic insight into the interaction of two linearly
polarized laser pulses which are tightly focused, we carried out additional 3D simulations. The 3D case takes into
account ejection of the seed particles perpendicular to the direction of laser pulse polarization, which is caused
by the ponderomotive force and can not be accounted for in the 2D case. This effect results in a lower efficiency
of pair production since fewer particles can experience the strong EM field of the established standing wave, and,
therefore, more laser power is required to achieve the pair production threshold. According to the 3D simulation,
when laser pulses interact with a spherical target having the density 100#, and the radius equal to w,=0.5 um, 8
PW per each laser beam is necessary. Figure 5 is showing the density and mean kinetic energy of BW positrons in
this interaction. BW positrons are trapped at electric field nodes, while the ones, that are expelled from the focal
spot region, acquire the highest energy.

However, the required laser power threshold might be lowered. First, the target shape should be optimized so
that more seed particles could remain in the interaction region till the standing wave is established. Second, laser
pulses of longer duration could be used for the interaction as it would lead to a more efficient pair production®.
We have performed the study for short 30 fs laser pulses, but the new 10 PW laser facility ELI-Beamlines? will
provide laser pulses of duration 150 fs. The longer duration of the standing wave will result in higher number of
created pairs. That would lead to further lowering the threshold for cascade pair production. To asses these effects,
a more detailed study involving 3D simulations is necessary. Furthermore, our additional 3D simulations verified
that the threshold power for cascade pair production is the lowest with the optimal target density when tight
focusing is employed, which is in agreement with our model and 2D simulations.
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Figure 5. Laser-target interaction in 3D for w,=0.5 um and a,= 1200. Iso-surfaces correspond to laser
intensity 5 x 10 W/cm?, red bullets to BW positrons having the relativistic factor > 1500. Mean kinetic
energy (E;) of BW positrons at y =0 um is projected onto the (x, z) plane. Density of BW positrons 1, at
z=0pm and x=0.25 um is projected onto the (x, y) and (y, z) plane, respectively. All projected quantities are
normalized to the maximum values and the density is in the log scale.

Tight focusing could be a key to an efficient pair production at 10 PW-class laser facilities in the setup where
two laser beams interact with a target of a properly chosen density. We have shown that using a target with an
appropriate density can help balance the effect of expelling seed particles from the high intensity region. Less laser
power is required to initiate the cascade when tight focusing is employed, which is favourable for experiments
at the upcoming multi-PW laser facilities. Moreover, achieving the high-intensity field using the tight focusing
leads to a more efficient two-beam collision in comparison to previous studies. Finally, our results do not show an
advantage of a more efficient seeding using a four-beam collision for this setup.

Methods

Numerical Modelling. It has been shown that in the case of colliding laser beams, the highest efficiency of
pair production is achieved when p-polarization is used'*!*. We analyze the laser-target interaction with p-po-
larized laser pulses using 2D and 3D particle-in-cell simulations with the code EPOCH in which the stochastic
nature of radiation emission is modeled using Monte Carlo technique. The electron-positron pair creation via
the Breit-Wheeler processes is also implemented in the code. For more details about the code please see the ref.!.

In our 2D simulations, the dimensions of the simulation box are 40 ym X 100 zm, the spatial resolution is A/30
in both directions and we used 100 particles-per-cell. Convergence tests were performed to verify the simulation
resolution used in the paper was sufficient for studying the threshold of the cascade pair production. To obtain
the data which is summarized in Fig. 4, we performed for each value of the focal spot radius (w,=0.5 ym, 1.0 pum,
1.5 um, 2.0 um) and for each value of the target density (n,=0.001#,, 0.01#,, 0.1n,, 1n, 10n, 50n, 100n,, 110x,,
125n,, 150n,, 200n,, 250n,, 300n,) a series of 2D simulations to find the minimal power required for achieving the
threshold for cascade pair production. The remaining data points are obtained by linear interpolation in Fig. 4.
The data presented in Table 1 are obtained from the simulations. In the 3D case, the simulation box has dimen-
sions 7 pmx7 pmx7 ym. The other parameters of the simulations remain the same as in the 2D case.

To model the EM field of a tightly focused laser beam we used the description which is valid within the con-
strained space-time region given by the conditions x < zz and cr < z, where 7 is the pulse duration®. We calcu-
lated the EM field at the focal plane (x = 0 zzm) for the whole duration of the laser pulse. By propagating the fields
using finite-difference time-domain (FDTD) method, we obtained the description of EM fields at any plane par-
allel to the focal one for all time steps. These fields are then used as an input describing tightly-focused laser
beams at the boundaries of the simulation box with the direction of their propagation reversed. Simulating tightly
focused beams can be a challenge for FDTD algorithm, because of possible numerical errors. However, we have
verified against the analytical description from eq. (28) in ref.?® that the cumulative error due to the propagation
of the electromagnetic fields through FDTD remains below 1% of the field amplitude in the laser focus.

Data Availability Statement. The datasets generated and analyzed during the current study are available
from the corresponding author on request.
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