Table 5 Prediction accuracy with converted and not converted input features.
Dataset | SVM-RBFa | SVM-linearb | SVM-polyc | SVM-sigd | RF | ANNs | DT | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Con. | No con. | Con. | No con. | Con. | No con. | Con. | No con. | Con. | No con. | Con. | No con. | Con. | No con. | |
1 | 0.985 | 0.985 | 0.990 | 0.605 | 1.00 | 0.56 | 0.990 | 0.540 | 1.00 | 0.865 | 1.00 | 0.975 | 0.995 | 0.895 |
2 | 0.970 | 0.905 | 0.975 | 0.600 | 0.985 | 0.640 | 0.995 | 0.455 | 0.960 | 0.795 | 0.990 | 0.930 | 0.965 | 0.785 |
3 | 0.985 | 0.860 | 0.975 | 0.465 | 0.980 | 0.575 | 0.975 | 0.500 | 0.860 | 0.780 | 0.995 | 0.910 | 0.900 | 0.705 |
4 | 0.960 | 0.810 | 0.925 | 0.515 | 0.985 | 0.400 | 0.980 | 0.420 | 0.850 | 0.655 | 0.985 | 0.825 | 0.865 | 0.695 |
5 | 0.970 | 0.790 | 0.910 | 0.535 | 0.965 | 0.550 | 0.980 | 0.460 | 0.810 | 0.615 | 0.995 | 0.780 | 0.840 | 0.600 |
6 | 0.945 | 0.815 | 0.860 | 0.500 | 0.985 | 0.475 | 0980 | 0.485 | 0.770 | 0.620 | 0.990 | 0.770 | 0.795 | 0.615 |
7 | 0.940 | 0.715 | 0.905 | 0.530 | 0.980 | 0.500 | 0.980 | 0.535 | 0.865 | 0.610 | 0.985 | 0.670 | 0.795 | 0.585 |
8 | 0.970 | 0.675 | 0.955 | 0.410 | 0.970 | 0.455 | 0.955 | 0.455 | 0.760 | 0.545 | 0.995 | 0.695 | 0.760 | 0.610 |
9 | 0.955 | 0.660 | 0.885 | 0.515 | 0.960 | 0.460 | 0.955 | 0.435 | 0.790 | 0.510 | 0.990 | 0.665 | 0.770 | 0.580 |
10 | 0.955 | 0.655 | 0.860 | 0.480 | 0.955 | 0.525 | 0.975 | 0.525 | 0.735 | 0.520 | 0.960 | 0.600 | 0.750 | 0.625 |