Table 5 Prediction accuracy with converted and not converted input features.

From: A fast approach to detect gene–gene synergy

Dataset

SVM-RBFa

SVM-linearb

SVM-polyc

SVM-sigd

RF

ANNs

DT

Con.

No con.

Con.

No con.

Con.

No con.

Con.

No con.

Con.

No con.

Con.

No con.

Con.

No con.

1

0.985

0.985

0.990

0.605

1.00

0.56

0.990

0.540

1.00

0.865

1.00

0.975

0.995

0.895

2

0.970

0.905

0.975

0.600

0.985

0.640

0.995

0.455

0.960

0.795

0.990

0.930

0.965

0.785

3

0.985

0.860

0.975

0.465

0.980

0.575

0.975

0.500

0.860

0.780

0.995

0.910

0.900

0.705

4

0.960

0.810

0.925

0.515

0.985

0.400

0.980

0.420

0.850

0.655

0.985

0.825

0.865

0.695

5

0.970

0.790

0.910

0.535

0.965

0.550

0.980

0.460

0.810

0.615

0.995

0.780

0.840

0.600

6

0.945

0.815

0.860

0.500

0.985

0.475

0980

0.485

0.770

0.620

0.990

0.770

0.795

0.615

7

0.940

0.715

0.905

0.530

0.980

0.500

0.980

0.535

0.865

0.610

0.985

0.670

0.795

0.585

8

0.970

0.675

0.955

0.410

0.970

0.455

0.955

0.455

0.760

0.545

0.995

0.695

0.760

0.610

9

0.955

0.660

0.885

0.515

0.960

0.460

0.955

0.435

0.790

0.510

0.990

0.665

0.770

0.580

10

0.955

0.655

0.860

0.480

0.955

0.525

0.975

0.525

0.735

0.520

0.960

0.600

0.750

0.625

  1. Here, a: SVM with radial basis function (RBF) kernel; b: SVM with linear kernel; c: SVM with polynomial kernel; d: SVM with sigmoid kernel. RF: Random Forest; ANNs: artificial neuron network; DT: Decision Tree; Con: the converted input features; No con: the not converted input features.