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Scalable excitatory synaptic circuit 
design using floating gate based 
leaky integrators
Vladimir Kornijcuk1,2, Hyungkwang Lim1, Inho Kim1, Jong-Keuk Park1, Wook-Seong Lee1, 
Jung-Hae Choi1, Byung Joon Choi3 & Doo Seok Jeong   1,2

We propose a scalable synaptic circuit realizing spike timing dependent plasticity (STDP)—compatible 
with randomly spiking neurons. The feasible working of the circuit was examined by circuit simulation 
using the BSIM 4.6.0 model. A distinguishable feature of the circuit is the use of floating-gate 
integrators that provide the compact implementation of biologically plausible relaxation time scale. 
This relaxation occurs on the basis of charge tunneling that mainly relies upon area-independent tunnel 
barrier properties (e.g. barrier width and height) rather than capacitance. The circuit simulations feature 
(i) weight-dependent STDP that spontaneously limits the synaptic weight growth, (ii) competitive 
synaptic adaptation within both unsupervised and supervised frameworks with randomly spiking 
neurons. The estimated power consumption is merely 34 pW, perhaps meeting one of the most crucial 
principles (power-efficiency) of neuromorphic engineering. Finally, a means of fine-tuning the STDP 
behavior is provided.

For nearly three decades, the brain and its information processing principles have been a benchmark in building 
artificial intelligence (AI) that enables recognition tasks by means of very-large-scale integration (VLSI) technol-
ogy—often referred to as neuromorphic engineering1. Attention to this has recently been boosted with regard 
to remarkably growing demands for hardware-based AI systems. The early attempts mostly revolved around 
realizing scalable replicas of biological spiking units (neurons)2,3 and their application to front-end sensors, e.g. 
silicon retinas4. These early attempts were then followed by a number of spiking neuron models with different 
degrees of biological plausibility, complexity, and tunability5–11, enriching available neuron models. Essential to 
neuromorphic engineering for AI are memory and learning that are believed to involve synaptic weight modi-
fication in support of feature abstraction. Spike timing dependent plasticity (STDP) is a seminal learning rule 
that describes the causality of postsynaptic spiking in a time domain12–15. Frequently, neuromorphic engineers 
benchmark the STDP in view of, mostly, its capability of temporal learning (real-time learning) and compatibility 
with neuromorphic systems16–20.

The STDP relates the long-lasting change of synaptic weight w to the temporal order between pre- and post-
synaptic spike times (Δt = tpost − tpre); long-term potentiation (LTP) is induced when the presynaptic spike 
precedes the postsynaptic one, and long-term depression (LTD) in the opposite case. For convenience, the former 
configuration of spikes is denoted by pre-post, and the latter post-pre. Mathematically, the STDP is often simpli-
fied as
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where spre and spost are pre- and postsynaptic state variables that exponentially decay with Δt at likely different 
time constants (τ+ and τ−), defining the degree of LTP and LTD, respectively. A+ and A− define the maximum 
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weight change. They can be either constant or reliant upon the current weight, which causes a significant differ-
ence in synaptic weight evolution through a learning period21–24.

A typical strategy for realizing the STDP in a neuromorphic circuit is to deploy two leaky integrators for pre 
and postsynaptic state variables (spre and spost) in conjunction with an analog or digital memory unit to store 
the evaluated synaptic weight. This general framework has been applied to various synaptic circuit designs 
thus far; a good review is given by Bamford et al.17. Table 1 summarizes several previous STDP circuits that are 
capable of real-time scale operation. Notably, the state variables are often realized by (i) leaky voltage integra-
tors using a standalone capacitor or the gate capacitor of a transistor (switched-capacitor integrators)17,25,26, (ii) 
current-starved inverter27, and (iii) operational transconductance amplifier (OTA)-based integrator19,28. Scaling 
down a metal-oxide-semiconductor field-effect transistor (MOSFET) in the integrator (particularly channel 
length below 100 nm) causes a significant rise in subthreshold leakage current29–31, and thus a large decrease in 
the relaxation time of the integrator with a given capacitor. For temporal learning, the relaxation time is a priori 
preferred to be comparable to that of the biological counterpart in favor of energy-efficient learning, sacrificing 
unnecessarily fast response. In this regard, needs for higher capacitance to compensate for the subthreshold leak-
age—maintaining the biologically plausible relaxation time—perhaps limit further scaling down. A workaround 
is to adopt digital technologies as done by Vogelstein et al.32; a random access memory (RAM) was deployed to 
store discrete state variable values, and their updates were evaluated in a programmable manner using a micro-
controller unit (MCU). Upon every spiking event, the MCU scans the entire RAM and updates the synaptic 
weights according to the STDP rule. As such, this digital implementation readily offers flexibility in designing 
the STDP model, hence can serve as a convenient platform in combination with hardware neurons. A possible 
disadvantage is, however, such that the weight values in the RAM are updated in serial order (time consuming), 
which hinders a large network with a number of connections (synapses) from real-time interaction with physical 
environments.

Another important aspect of synaptic circuit design is synaptic weight storage. Ideally, each synaptic unit has 
a long-lasting analog weight value in a desired range. A common strategy is to use a standalone capacitor that 
enables current integration and consequently outputs analog voltage17,19,28. However, it is challenging to achieve 
ideal weight storage because of information loss in due course. The charge loss (poor retention) given the leakage 
in the subthreshold MOSFET is generally a downside of this common strategy. As a workaround, long-term 
storage is offered by a bistability circuit that drives the capacitor voltage to one of two stable states26 or by a RAM 
that stores binary weight values25. Regarding the latter approach, the stored weight value is not necessarily binary. 
An analog-digital converter can be used to digitize the value that is subsequently stored in a RAM as mentioned 
above32, though the memory capacity restricts the precision of weight. Floating-gate (FG) based synaptic circuits 
may meet the requirements, which offer both long-lasting storage and analog-type weight representation33. A gate 
voltage in a floating-gate MOSFET (FG-MOSFET) is in control of the charge on the FG—the charge can be main-
tained in the standby state—which alters the channel conductance. Following the original proposal, the design 
was refined by Ramakrishnan et al.27 and Brink et al.34, offering a viable solution to VLSI synapse design. Other 
than these mainstream strategies, an emerging approach offers the feasible use of resistive RAM (RRAM for short 
or popularly referred to as memristive device) based on novel materials as a memory bit35–41. RRAM exhibits non-
volatile resistive switching between multinary states (not all types of RRAMs though). Additionally, an RRAM 
array (particularly, passive crossbar array) is highly scalable, meeting the design rule of 4F2 for the passive array.

In this work, we propose a VLSI-compatible synaptic circuit for spiking neural network, which captures the 
pair-based STDP behavior13. This synaptic circuit was designed by adopting 65 nm CMOS technology and its 
feasible operation was examined by using the BSIM 4.6.0 model42 with foundry parameters—a built-in model in 
LTspice IV. The circuit employs three FG-MOSFETs whose function is two-fold: two FG-based leaky integrators 
to realize pre and postsynaptic state variables (spre and spost) and an additional FG-MOSFET to store the weight 
value. The first two FG-MOSFETs differ in retention time from the last one; the charge on the FG in each of them 
is released at a biologically plausible rate, whereas the last one needs to be of long retention. For this storage 
FG-MOSFET, the detailed balance between charge injection into and ejection out of the FG limits the growth of 
synaptic weight, leaving the coefficients A+ and A− in (1) dependent upon synaptic weight. Eventually, we pay 
attention to the competitive adaptation of synaptic weight within unsupervised and supervised frameworks and 
the detailed kinetics of the adaptation by phase-plane analysis. The proposed synaptic circuit appears to host such 
synaptic functions.

Reference Weight State variable implementation Weight storage element Technology

S. A. Bamford et al.17 Analog Capacitor-based leaky integrator Capacitor 0.35 um

G. Indiveri et al.26 Analog-bistable Capacitor-based leaky integrator Capacitor 0.80 um

J. V. Arthur and K. Boahen (2006)25 Binary Capacitor-based leaky integrator SRAM 0.25 um

S. Ramakrishnan et al.27 Analog Current-starved inverter FG transistor 0.35 um

A. Bofill-i-Petit et al.19 Analog OTA-based leaky integrator Capacitor 0.60 um

J. M. Cruz-Albrecht28 Analog OTA-based leaky integrator Capacitor 90 nm

R. J. Vogelstein et al. (2002)32 Quasi-analog (discretized) Programmed into the microcontroller RAM —

This work Analog FG-based leaky integrator FG transistor 65 nm (simulation)

Table 1.  Summary of previous STDP circuit designs.
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Results
FG synaptic circuit.  The FG synaptic circuit is shown in Fig. 1. This circuit realizes the pre and postsynaptic 
state variables (spre and spost), and they are determined by spiking history. Note that considered is nearest-spike 
interaction between pre and postsynaptic spikes43. Evaluating the state variables follows the two steps: (i) intro-
ducing a continuously varying function that outputs each state variable and (ii) sampling the value upon an 
incoming spike. The pre and postsynaptic state variables are parameterized by Vs_pre and Vs_post, respectively. A 
positive weight change in LTP is dictated by the presynaptic state variable while a negative change in LTD by 
postsynaptic state variable, and thereby it is intuitive to endow Vs_pre and Vs_post with different polarities (here 
Vs_pre ≤ 0 and Vs_post ≥ 0). For the postsynaptic state variable, the subcircuit in Fig. 1a (leaky integrator) takes up 
the first task (introduction of a state variable function), and that in Fig. 1c (sampling) samples the current value 
only if a presynaptic spike is applied. For the presynaptic state variable, the subcircuits in Fig. 1b and d introduce 
a state variable function and sample the current value, respectively.

Each leaky integrator comprises a FG-MOSFET (TJ1 + M2 and TJ4 + M11 for the post and presynap-
tic state variable, respectively) and voltage divider. Notably, for the postsynaptic state variable, the integrator 
has two stages for non-inverting voltage transfer characteristic (VTC). Each FG-MOSFET is a tunnel junction 
(TJ)-MOSFET stack in conjunction with an auxiliary capacitor (C1 and C3 for the post and presynaptic state vari-
able, respectively) that is used for precisely initiating the desired charge relaxation. Each integrator piles up charge 
on the FG upon incident spikes in balance with charge relaxation (ejection) so that the channel conductance of 
the FG-MOSFET varies accordingly.

The sampling subcircuit for each variable outputs nonzero voltage only in the presence of a counter spike, 
i.e. sampling spre and spost needs a post and a presynaptic spike, respectively. The nonzero output from the sub-
circuit reads the current state variable (Vs_pre and Vs_post) of different polarities and relays it to the weight storage 
subcircuit.

The synaptic weight is memorized on the FG of the FG-MOSFET (TJ2 + TJ3 + M10). Vs_pre and Vs_post are 
applied to TJ3 and TJ2, respectively, and charge is accordingly integrated on the FG, outputting Vw in combination 
with the voltage divider M9. The auxiliary capacitor C2 is used as for the integrators. Vw is subsequently sampled 
by a presynaptic spike and applied to the membrane of the postsynaptic neuron, raising the membrane potential.

Note that the circuit parameters in Tables 2 and 3 were used for the simulations unless otherwise stated. The 
subcircuit-wise synaptic circuit operation is fully detailed in Supplementary Information.

Plasticity induction.  The STDP behavior of the proposed circuit was first identified in a time domain for two 
preliminary cases (causal and anti-causal cases) using the circuit parameters listed in Tables 2 and 3. The former 
indicates a synapse subject to a single presynaptic spike that precedes a postsynaptic spike train (pre-post), whereas 
the latter the opposite order (post-pre) as plotted in Fig. 2a and b, respectively. The first pre and postsynaptic 
spikes abruptly raise the corresponding FG voltage by approximately 180 and 135 mV, respectively (Fig. 2c and d).  
The amplitude and width of each spike were 0.5 V and 30 μs, respectively. Note that VFG_post has the larger relax-
ation time than VFG_pre, which endows the STDP behavior in a timing-difference (tpost − tpre) domain with the 
larger depression window than potentiation window as will be discussed below. VFG_pre and VFG_post were subse-
quently sampled by the following opposite spike trains, resulting in the state variables Vs_pre and Vs_post, respec-
tively (Fig. 2e and f). The sampled values were respectively applied to the tunneling junctions TJ2 and TJ3, causing 
the increase of Vm as shown in Fig. 2g and h. Notably, Vs_pre and Vs_post larger than a certain threshold contribute to 
the Vm change (Fig. 2g and h). This threshold is defined as voltage enabling the injection of one elementary charge 

Figure 1.  Proposed synaptic circuit. Leaky integration is realized on the FG of M2 and M11, which is 
incorporated into the state variable generators (a) and (b) for post and presynaptic variable, respectively. 
Sampling subcircuits (c) and (d) read out the current post and presynaptic variable, respectively, and relay them 
to (e) the storage subcircuit. This storage subcircuit converts Vm to synaptic weight that is parameterized by Vw.
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for 30 μs—no noticeable change in Vm results from voltage below this threshold. Given the difference in size for 
TJ2 and TJ3 (Table 3), the threshold voltage also differs: 0.35 V and −0.33 V for TJ2 and TJ3, respectively. The 
synaptic weight Vw eventually varied upon the Vm, which captures the synaptic plasticity upon the temporal order 
of pre and postsynaptic spikes (Fig. 2i and j). It is noted that the causal spike order (Fig. 2a) results in an increase 
in Vw, i.e. potentiation while the anti-causal order in a decrease in Vw, i.e. depression.

The proposed synaptic circuit with the same circuit parameters causes a STDP behavior in a timing-difference 
domain as plotted in Fig. 3. The reference (initial) weight (Vw0) was approximately 151 mV. The LTD window is 
wider than the LTP; fitting the plot to (1) relates a LTD and LTP time constant of approximately 76.5 and 16.8 ms, 
respectively. The STDP behavior can be tweaked by means of circuit parameters as detailed in Supplementary 
Information.

Weights dependence of STDP.  It is important to delimit synaptic weight such that the uncontrolled 
growth is avoided. To do so, the weight change for each pair of pre and postsynaptic spikes needs to depend 
upon the current weight in a way that the increase declines with the increase of the current weight. In fact, the 
weight dependence of STDP has been demonstrated to be of importance in its functionalities on a network 
scale, such as selectivity development21, temporal correlation encoding22, receptive field stability23, and synap-
tic weight distributions24. The proposed circuit spontaneously leads to weight-depending STDP given (i) the 
detailed balance governing the charge transfer into and out of the FG in the storage element (TJ2 + TJ3 + M10) 
and (ii) output saturation in the VTC of M9 + M10 (see Supplementary Information). Given the detailed bal-
ance of charge transfer, the more electrons the FG keeps, the more negatively the FG (Vm) is charged and thus 
the more likely the potential configuration repels further electron injection (see Supplementary Information). 
Consequently, the lower Vm for the moment, the more likely that a decrease in Vm by the next pre-post spike 
pair tends to be small, relating ΔVm to the current synaptic weight. Besides, the common node (Vm) for both 
LTP and LTD couples the weight-depending LTP and LTD such that ΔVm for LTD (i.e. ΔVm > 0) also depends 
upon the current Vm. The lower Vm (<0) for the moment, the larger ΔVm (ΔVm > 0) tends to be caused by a 
post-pre spike pair. Alongside the detailed balance of charge dynamics, the VTC of the storage subcircuit—
outputting voltage in 0–0.5 V as addressed in Supplementary Information—underpins the weight-depending 
LTP, particularly, limited growth of synaptic weight below a Vw of 0.5 V. Additionally, the VTC restricts Vw (≥0) 
such that the LTD that outweighs the LTP cannot lead to negative output (Vw < 0), Vw = 0 instead—implying 
no synaptic transmission.

In support of the weight-depending STDP, ΔVw when Δt = ±1 ms was evaluated with Vw (Fig. 4). As such, 
ΔVw significantly depends upon Vw due to the aforementioned two factors that simultaneously (but relatively) 
contribute to the weight-dependence. The gray region in Fig. 4a indicates the weight change that is dominantly 
impeded by the detailed balance insomuch as the VTC in the given Vw region is far from both output saturation 
regions (see Supplementary Information). In contrast, the VTC output saturation outweighs the detailed balance 
outside the gray region, resulting in ΔVw falling to zero in the vicinity of the two poles (0 and 0.5 V).

This weight-depending STDP was applied to a preliminary system in which two neurons (N1 and N2) were 
bidirectionally coupled through the proposed synaptic circuit (Fig. 4b). A pair of spikes (N1’s spike preceding 
N2’s by 1 ms) was elicited every 50 ms (20 Hz). The two synapses accordingly adjusted their weight in the given 
circumstances as shown in Fig. 4c. It is clearly noticed that the persistent stimulation bifurcates the two synapses 
from the initial weight (ca. 151 mV) with regard to the temporal order of spikes; the synapse from N1 to N2 

Spike amplitude (V) Spike width (μs) C1 (fF) C2 (fF) C3 (fF) Vd1 (V) Vd2 (V)

0.5 30 25 30 1.5 0.70 0.65

Vp1 (V) Vp2 (V) Vctrl (V) Vdd+ (V) Vdd− (V) Temperature

−0.26 −0.80 0.51 0.5 −0.5 27 °C

Table 2.  Parameters used for circuit simulations.

Subcircuit Element number Channel length (nm) Channel width (nm) Oxide thickness (nm)

FG nodes

TJ1, TJ4 60 120 1.1

TJ2 60 120 1.75

TJ3 120 240 1.75

Postsynaptic state variable generator M1-M4 60 120

2.5

Postsynaptic state variable sampling
M5-M6 120 120

M7-M8 60 120

Presynaptic state variable generator
M11-M12 60 120

M11 240 120

Presynaptic state variable sampling M14-M15 60 120

Storage
M9 120 480

M10 90 1400

Table 3.  Sizes of MOSFETs in use.
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encountered spike pairs that support LTP (Δt = 1 ms) while the other underwent LTD given that Δt = −1 ms. 
Additionally, the synaptic weight saturation obviously reflects the weight-depending STDP. As shown in Fig. 4a, a 
pair of spikes (Δt = 1 ms) causes a noticeable rise in Vw unless the current Vw is below approximately 0.45 V. By all 
rights, this value (0.45 V) is supposed to be the maximum Vw. However, the actual maximum Vw is around 0.27 V. 
This inconsistency arises from the interaction between the postsynaptic spike in a pair and presynaptic spike in 
the next pair, which meets the LTD condition (Δt = −49 ms). Given the wide time window for LTD (Fig. 3), Δt 
of −49 ms is sufficient for a notable decrease in Vw. In this regard, the maximum Vw is determined mainly by the 
weight dependence of LTP, but in combination with LTD caused by the wide LTD time window.

The weight-dependence can be tweaked by means of control signal Vctrl, e.g. initial synaptic weight (Vw0) and 
upper and lower limits of weight, and thus the desired STDP behavior can readily be achieved. We set aside this 
issue until Supplementary Information.

Competition between synapses.  The feasibility of the proposed synaptic circuit was further validated for 
a small network within the unsupervised and supervised learning frameworks. The test network was composed 
of two presynaptic (N1 and N2) and a single postsynaptic neuron (N3) as shown in the inset of Fig. 5a. The pre-
synaptic neurons were Poisson neurons that spike following a renewal process (Poisson process). The procedure 
for Poisson spike generation can be seen in ref.44. The postsynaptic neuron was assumed to be a point neuron 
and realized by employing the Stein model45 in which the following subthreshold membrane potential um holds:

Figure 2.  Simulated transient voltage characteristics during plasticity induction for (a) causal and (b) anti-
causal spike patterns. The transient FG voltage following the first spike for both causal and anti-causal cases is 
plotted in (c) and (d), respectively. Given the spike pattern, the state variable is continuously elicited as shown 
in (e) and (f) and consequently alters the storage FG voltage (Vm) [(g) and (h)], respectively. Eventually, synaptic 
weight Vw evolves as plotted in (i) and (j), indicating potentiation and depression, respectively.
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where τm denotes the relaxation time constant of the membrane and was set to 10 ms. Nu and Ns mean the number 
of presynaptic neurons (here two) and the total number of spikes from each presynaptic neuron. The superscript 
indicates presynaptic neuron label such that V t( )i

w  and tj
i mean the synaptic weight for the presynaptic neuron 

(i = 1 or 2) and jth spiking time for the same presynaptic neuron, respectively. Thus, the Dirac delta function sam-
ples the synaptic weight in response to spiking, and the sampled value—multiplied by constant α (set to 0.3)—is 
a rise in um upon spiking. Once the threshold for spiking (90 mV) is reached, the neuron fires a spike and subse-
quently resets um to zero. The parameters in Tables 2 and 3 were used for these simulations.

First, we considered the synaptic weight evolution in response to uncorrelated Poisson spikes from N1 and N2 
and the induced postsynaptic spikes from N3 (unsupervised learning). N1 and N2 were assumed to spike at 5 Hz. 
N3 receives the presynaptic spikes via the synaptic circuits, and the membrane potential consequently evolves. The 
change of Vw1 (for N1 → N3) and Vw2 (for N2 → N3) in these circumstances is displayed in Fig. 5a. The evolution 
can be divided into two phases, a simultaneous increase in weight in the first place (ca. 0–75 s) and the subsequent 
synaptic bifurcation. In the first phase, N1 and N2 together elicit spikes from N3, and their contribution is likely 
equal given the same spiking rate. That is, synaptic association is dominant over competition such that both 
synapses are reinforced given the causal order of pre-postsynaptic spikes for both synapses. Through this phase, 
each synaptic weight becomes sufficiently high to evoke a postsynaptic spike without association, which is then 
followed by competition, implying transition to the bifurcation phase (t > 75 s). The competition takes place at 
random as follows; (i) in view of the high synaptic weight one of N1 and N2 is solely able to evoke a postsynaptic 
spike, (ii) the causal correlation between either N1 or N2 (chosen at random) and N3 is consequently established, 

Figure 3.  STDP behavior in a timing-difference domain. The change in synaptic weight (ΔVw) was evaluated 
with a single pair of pre and postsynaptic spikes (different Δt). The circles indicate the simulation data, which 
are fitted to the simplified mathematical formula in (1) (solid red lines). The fitting results in τ+ and τ− of 16.8 
and 76.5 ms, respectively. The reference (initial) synaptic weight (Vw0) was 151 mV that results from a Vctrl of 
0.51 V.

Figure 4.  Simulated weight-depending STDP behavior of the proposed synaptic circuit. (a) Dependence of 
ΔVw on Vw when the synaptic circuit is subject to a single pair of pre and postsynaptic spikes with Δt = ±1 ms. 
In the gray region, ΔVw is mostly governed by the detailed balance of charge transfer via the FG in the storage 
element, whereas out of the gray region the VTC of M9 + M10 mainly determines the weight dependence. (b) 
Schematic of bidirectionally wired neurons (N1 and N2) that fire correlated spikes with 1 ms Δt every 50 ms. (c) 
Consequent synaptic bifurcation.
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which reinforces the chosen synapse, and (iii) in contrast, the unchosen synapse is subject to uncorrelated pre 
and postsynaptic spiking. The uncorrelated spiking probabilistically makes the anti-causal effect dominant over 
the other in light of the larger time windows for LTD than LTP (see Fig. 3). Thus, the synapse falls behind in the 
competition.

The weight evolution from the initial value is better visualized on the Vw1 − Vw2 phase plane in Fig. 5b. This 
phase plane analysis helps us readily predict the dynamics of Vw1 and Vw2 changes and important states such as 
null-clines and fixed points (if exist). Each arrow on the plane denotes a vector field dV dt i dV dt j( / ) ( / )w1 w2

→
+

→ at 
a given (Vw1, Vw2) point. The vector indicates ΔVw1/Δt and ΔVw2/Δt from the current states (Vw1(t), Vw2(t)): 
ΔVw1/Δt = [Vw1(t + Δt) − Vw1(t)]/Δt and ΔVw2/ΔΔΔt = [Vw2(t + Δt) − Vw2(t)]/Δt. Vw1(t + Δt) and Vw2(t + Δt) 
were statistically evaluated with (Vw1(t), Vw2(t)) that were subject to Poisson presynaptic spikes at 5 Hz for 2 s 
(Δt = 2). This field evaluated was repeated over all nodes on the plane, resulting in the phase plane. The datasets 
in Fig. 5a are re-plotted on the phase plane, where their evolutions are in good agreement with the vector fields. 
Notably, the phase plane is symmetric with respect to a diagonal given that N1 and N2 spike at the same rate 
(5 Hz). Thus, the opposite trajectories were observed at random with equal probability.

Following is synaptic weight evolution upon time-varying spiking rate for the same simple network. In this 
simulation, only one of N1 and N2 fired spikes within a time bin of 200 ms, and the next spiking neuron was cho-
sen at random. The firing rate was the same for all time bins (20 Hz). Likewise, the synaptic evolution encounters 
two phases. Alternating input spikes between N1 and N2 enhance the activity of N3 in the first place; therefore, 
both weight values initially slightly increase. When one presynaptic neuron takes the lead at random, the corre-
sponding pre and postsynaptic spiking pattern establishes a strong causal correlation outweighing the other syn-
apse, consequently reinforcing the chosen synapse. As a result, the highly probable anti-causal spike pairing for 
the unchosen synapse weakens the synapse. Similar to the case shown in Fig. 5b, two types of trajectories (Fig. 6b) 
were observed at random with equal probabilities.

We finally justified the feasible use of the proposed synaptic circuit for supervised learning. To this end, an addi-
tional presynaptic neuron (Nsup) was deployed, which maintained a synaptic weight (Vw_sup) of 50 mV and spiked 
at 50 Hz in sync with one of N1 and N2 (Fig. 6c and e). Nsup is termed as bias. Similar to the previous simulation, the 
activity (20 Hz) randomly toggled between N1 and N2 every 200 ms. A schematic of presynaptic spiking patterns in 
conjunction with a spiking pattern of Nsup in sync with N1 and N2 is depicted in Fig. 6c and e, respectively. This bias—as 
its name indicates—biases the vector field on the phase plane towards the side on which the weight of the out-of-sync 
neuron out of sync vanishes as plotted in Fig. 6d and f. Therefore, supervised learning can be achieved using the bias.

Effect of MOSFET variability on STDP.  MOSFET variability likely brings on a technical issue, particularly, 
for analog circuits. Bearing this in mind, we address the effect of such variability on STDP and the consequent selec-
tivity evolution with regard to the robustness of the proposed synaptic circuit. MOSFET variability includes random 
dopant fluctuation (RDF) and line-edge roughness (LER)46,47. The former causes threshold voltage (Vth) fluctuation 
that likely follows a normal distribution centered at the ideal Vth value (for invariant dopant density) with a standard 
deviation σVt given by the Pelgrom’s model48; σ = A LW/V RDFt

 where ARDF, L, and W denote a proportionality 
constant, channel length, and channel width, respectively. In this work, ARDF was set to 1.27 × 10−9 V·m, conferring 
15 mV in σVt on the smallest MOSFETs (60 nm × 120 nm) in line with ref.47. Additionally, LER was taken into 
account by allowing random variation in MOSFET channel length; the length for each MOSFET was drawn from a 
normal distribution with a standard deviation of A W/LER  in which ALER was set to 1.04 × 10−12 m3/2. This LER 
effect results in approximately 3 nm standard deviation for 120 nm channel in line with ref.47.

Figure 5.  Unsupervised competition between two presynaptic neurons. (a) Synaptic evolution (adaptation) 
under temporal spiking configuration of two Poisson neurons (N1 and N2) and single postsynaptic neuron (N3) is 
plotted. The schematic of the network is depicted in the inset. N1 and N2 fire Poisson spikes at 5 Hz, and N3 spikes 
accordingly. (b) Phase plane analysis on synaptic bifurcation on the trials in (a)—indicated by different colors. 
The winning synapse was chosen at random. The same parameters as tabulated in Tables 2 and 3 were used.
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Given these possible causes of variability, 200 pairs of synaptic circuits were acquired and subject to STDP and 
selectivity evolution identifications. In Fig. 7a, the 200 STDP behaviors (gray curves) are appended to the ideal 
one (red curve) identical to Fig. 3. Despite the present variability, the spike-timing effect (LTP and LTD for Δt > 0 

Figure 6.  Comparison between unsupervised and supervised adaptation cases. (a) Unsupervised competition 
in the same network as the inset in Fig. 5(a). One of N1 and N2 was randomly chosen every time bin (width: 
200 ms), and the chosen neuron was given a spiking rate of 20 Hz. Sampled synaptic evolution trajectories are 
plotted on the phase plane in (b)—each color denotes each sample. The two opposite types of trajectories were 
observed at random at the equal probabilities. (c) Supervised adaptation by deploying a bias neuron (Nsup) that 
spikes at 80 Hz in sync with N1. With the aid of Nsup, N1 always wins N2 as seen on the phase plane in (d). For Nsup 
in sync with N2, which makes N2 win N1, data are shown in (e) and (f).
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and Δt < 0, respectively) is validated as a whole other than few exceptions. Alongside this spike-timing effect, 
the distribution of initial synaptic weight is of concern in selectivity evolution. The probability density function 
(PDF) of initial weight from 200 circuits is nicely fitted to a normal distribution function as plotted in Fig. 7b.

Eventually, selectivity evolution was identified for 200 pairs of circuits using the supervised learning scheme 
depicted in Fig. 6e—Nsup in sync with N2 to let Vw2 win Vw1. The data are plotted in Fig. 7c that reveals Vw2 out-
weighing Vw1 as a whole albeit scattered. Additionally, variation in initial synaptic weight can be ascertained in 
Fig. 7c. Figure 7d displays a PDF for Vw1 and Vw2 values at 100 s. It is noticeable that the potentiation probability 
of Vw2 is higher than Vw1 in support of the supervised learning.

Discussion
The FG-based leaky integrators in the proposed synaptic circuit alleviate the area overhead for real-time 
scale operation in favor of scalability10. The FG-based leaky integrator may offer an advantage over the 
switched-capacitor integrator for deep submicron technology where the subthreshold leakage through the short 
channel29–31 is in need of high capacitance to enable real-time scale operation. To back the scalability of the 
FG-based integrator (e.g. TJ1 + C1 + M2 in Fig. 1) in part, its relaxation time was evaluated for different capac-
itances (CFG) and barrier thicknesses (ttun) (Fig. 8). Here the FG-based integrator was subject to a single spike 
(0.5 V amplitude and 30 μs width). The relaxation time τrelax was defined as a time period during which the FG 
voltage amplitude falls below the half of its peak value. As such, τrelax is remarkably susceptible to ttun to the extent 
that almost two orders of magnitude change in τrelax is managed by merely 30% change in ttun while a rise in CFG 
by approximately one order of magnitude increases τrelax by less than two orders of magnitude (Fig. 8a). Figure 8b 
shows a CFG-ttun relationship for a τrelax of 0.5 s, indicating that 1.3 nm ttun needs merely 2 fF CFG for real-time scale 
operation.

The same is applied to the synaptic weight storage (TJ2 + TJ3 + C2 + M10), the expected relaxation time is 
much longer though. Hereafter, it appears proper to term this relaxation time as retention time. A thicker tunnel 
barrier is desirable in favor of a better retention; however, as such, charge injection through a thick tunnel barrier 
is of difficulty with regard to the tunneling probability that decays exponentially with barrier thickness. To be 
precise, it turns out that the spike (0.5 V amplitude and 30 μs width)—that employed through the entire simu-
lations—cannot drive tunneling through a tunnel barrier (>1.8 nm). Thus, we chose 1.75 nm, which offers the 
retention of Vm programmed at different levels as shown in Fig. 9a. The retention time τret was defined as a time 
period during which |Vm| declines by 10%. τret depends upon the programmed Vm level, which is typically in the 
70–100 s range (Fig. 9b). The retention is perhaps insufficient for long-term memory. However, it appears feasible 

Figure 7.  Effect of MOSFET variability including RDF and LER on STDP. (a) STDP behavior for 200 Monte 
Carlo simulation results (gray) and no variability (red). Each behavior was obtained with a different set of 
MOSFET parameters. (b) Distribution of initial synaptic weight, plotted from 200 Monte Carlo runs. (c) 
Synaptic evolution for 200 circuits given random MOSFET mismatch. The protocol in use was identical to that 
in Fig. 6(e) in attempt to lead Vw2 to potentiation. (d) The distribution of Vw1 and Vw2 at 100 s.
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for synaptic competition (bifurcation) to terminate within the retention time as identified in Fig. 5a. In addition, 
if the memory retention is of significance for a particular application, it can be stored as binary numbers25,26,32.

The reliability of FG-MOSFETs is an important issue since the tunnel barrier is typically so thin that the program-
ming voltage causes a high electric field across the barrier—that often brings on dielectric breakdown. Dielectric 
breakdown is often parameterized by charge-to-breakdown (QTB)49–51. QTB increases with decreasing the oper-
ating voltage; for silicon oxide layers (<3 nm) at 2.5 V, it was shown to exceed 106 C/cm2 under constant voltage 
stress52–54. In our simulations, a single spike (0.5 V) to TJ1 and TJ4 drives <46 μC/cm2 and <4 μC/cm2, respectively. 
For TJ2 and TJ3, the value is below 1 μC/cm2. Therefore, the operation conditions partly support high endurance.

The observed variation in synaptic evolution due to MOSFET variability seemingly falls short of being 
accepted in a deterministic system without error-tolerance. However, benchmarking deep learning55, even 
a deterministic learning algorithm, such as back-propagation, needs to involve stochasticity in the beginning 
(initially random weight values) and during the training (regularization) for a better training56. Likewise, the 
stochasticity shown in the STDP behavior likely provides the network with high entropy (Shannon information) 
that allows a large number of representations. In line with deep neural networks, spiking neural networks may be 
in general error-tolerant such that the stochastic STDP shown in Fig. 7d may be acceptable to the extent to which 
the stochasticity does not lead to faulty results. Nevertheless, the degree of error-tolerance varies upon the archi-
tecture, learning rule, neuron model, etc., which is beyond the scope of this work. Thus, we leave this question 
open for the time being.

Energy efficiency is an important principle of neuromorphic engineering. The proposed synaptic circuit is 
energy-efficient with regard to the subthreshold operation of most MOSFETs in the circuit. The circuit theoreti-
cally consumes approximately 34 pW, and this power is almost identical to the standby power. Namely, the standby 
power consumption is dominant over the synaptic operational power consumption. Akin to the STDP behavior, 
the power consumption is also susceptible to MOSFET variability; the PDF of power consumption follows a nor-
mal distribution centered at 34 pW with a standard deviation of approximately 12 pW. This is fairly comparable to 
previous reports, for instance, 60 pW in the work by Bamford et al.17 and 37 pW by Cruz-Albrech et al.28.

The temperature-resilience of the proposed synaptic circuit should also be taken into consideration. 
Practically, the circuit varies on its temperature (mostly, temperature increase) due mainly to power dissipation 
on the chip and/or ambient temperature change. To identify the temperature resilience, we varied the circuit 

Figure 8.  (a) Charge relaxation time τrelax with tunnel barrier thickness ttun for different capacitance CFG values 
in the FG integrator sketched in the inset of (b). (b) A relationship between CFG and ttun for a τrelax of 0.5 s.

Figure 9.  (a) Time-dependent change in Vm that was initially set to different values. (b) Retention time τret for 
different initial Vm values. The retention time was defined as the time period during which |Vm| decreases by 
10%. The storage element in Fig. 1 was re-sketched in the inset.
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temperature from 0 to 60 °C and acquired the STDP behavior at each temperature. The simulation results reveal 
that the STDP behavior is as a whole preserved in the given temperature range in spite of the variation in detail 
(Fig. 10a). The detail is addressed in Supplementary Information. Further, the power consumption increases with 
circuit temperature, reaching approximately 86 pW at 60 °C as shown in Fig. 10b. The increase is due mainly to 
the subthreshold operation of all MOSFETs in the circuit in that the channel current is thermally activated, and 
thereby consuming more power.

Given the significantly low power operation of the synaptic circuit, the power consumption and consequent 
temperature increase are unlikely to be sufficiently high to heat the circuit above 60 °C even on the synaptic array 
level. As a benchmark, the recent central processing unit (Intel i7-6700K) under the maximum load consumes 
approximately 100 W and its core reaches approximately 70 °C when cooled by air. Thus, we believe that the tem-
perature of the synaptic array with air-cooling stays much below this benchmark given the extremely low power 
consumption of a single synaptic unit.

The estimated circuit area is approximately 40 µm2, whose layout is shown in Fig. S4 in Supplementary 
Information. When implemented in a crossbar array, the area is reduced down to 24 µm2 such that the unit 
synaptic circuits in the same row and column can share the capacitors. Other synaptic circuit designs are nicely 
overviewed in ref.20. Notably, the three capacitors take a considerable portion (ca. 35%) so that the use of a high-k 
dielectric material in place of SiO2 is a solution to a reduction in the circuit area.

Conclusion
We proposed a synaptic circuit for STDP, which potentially fulfills competitive synaptic adaptation (selectivity) 
with randomly spiking neurons at significantly low expense (area overhead and power consumption). This out-
standing potential of the proposed circuit mainly owes to the FG integrator for the state variables and synaptic 
weight storage, which is expected to outperform capacitor-based integrator, particularly, in the deep-submicron 
regime. In this study, the STDP was viewed as the reinforcement of causality of postsynaptic spiking. In this regard, 
the circuit simulation highlighted the spontaneous evolution of synaptic weight with regard to causality reinforce-
ment in a random (unsupervised learning) and deliberate manner (supervised learning with the aid of bias).
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