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Computational trans-omics 
approach characterised methylomic 
and transcriptomic involvements 
and identified novel therapeutic 
targets for chemoresistance in 
gastrointestinal cancer stem cells
Masamitsu Konno1,2, Hidetoshi Matsui   3, Jun Koseki2, Ayumu Asai1,2, Yoshihiro Kano1,4, 
Koichi Kawamoto4, Naohiro Nishida4, Daisuke Sakai1, Toshihiro Kudo1, Taroh Satoh1, 
Yuichiro Doki4, Masaki Mori4 & Hideshi Ishii1,2

We investigated the relationship between methylomic [5-methylation on deoxycytosine to 
form 5-methylcytosine (5mC)] and transcriptomic information in response to chemotherapeutic 
5-fluorouracil (5-FU) exposure and cisplatin (CDDP) administration using the ornithine decarboxylase 
(ODC) degron-positive cancer stem cell model of gastrointestinal tumour. The quantification of 5mC 
methylation revealed various alterations in the size distribution and intensity of genomic loci for 
each patient. To summarise these alterations, we transformed all large volume data into a smooth 
function and treated the area as a representative value of 5mC methylation. The present computational 
approach made the methylomic data more accessible to each transcriptional unit and allowed to 
identify candidate genes, including the tumour necrosis factor receptor-associated factor 4 (TRAF4), as 
novel therapeutic targets with a strong response to anti-tumour agents, such as 5-FU and CDDP, and 
whose significance has been confirmed in a mouse model in vivo. The present study showed that 5mC 
methylation levels are inversely correlated with gene expression in a chemotherapy-resistant stem cell 
model of gastrointestinal cancer. This mathematical method can be used to simultaneously quantify 
and identify chemoresistant potential targets in gastrointestinal cancer stem cells.

The methylation of deoxycytosine to form 5-methylcytosine (5mC) is one of the most important features of 
cancer1–4 which dynamically changes during carcinogenesis, metastasis and tumour reccurrence5. Therefore, 
investigating the relationship between DNA methylation and transcription is important for the interpretation of 
cellular responses and development of novel therapeutic strategies. Extensive DNA methylation and transcription 
analyses have provided large quantities of data, and it is difficult to identify critical genes related to cancer devel-
opment from these data. We expressed DNA methylation profiles as smooth functions using Gaussian functions 
to extract appropriate information from the data. Tumours contain a subpopulation of cells, called cancer stem 
cells (CSCs), which are self-renewing and tumorigenic and play a role in the resistance against chemotherapy 
and radiotherapy6–8; therefore, we aimed to determine the efficient methods of identifying therapeutic targets 
using a CSC model of ornithine decarboxylase (ODC)3–5 to characterize intracellular events based on the 5mC 
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methylome and transcriptome data. ODC is reportedly an important enzyme for the maintenance and chemore-
sistance of CSCs9–12. In this study, we used the ODC system as a CSC model to establish a new trans-omics model 
for DNA methylation and transcription. We identified several candidates, including the tumour necrosis factor 
receptor-associated factor 4 (TRAF4), as candidates for conferring resistance to anti-cancer drugs in CSCs of 
gastrointestinal cancer.

Results
Standard analysis of gene expression and DNA methylation.  To determine the differences between 
drug responses in Zs+ CSCs and Zs− non-CSCs, we exposed cells to 5-FU or CDDP for 48 h. We performed an 
extensive analysis of gene expression and DNA methylation (Fig. 1A). The expression of most genes was upreg-
ulated after anti-cancer drug treatment (Fig. 1B). Moreover, DNA methylation decreased in all autosomal chro-
mosomes in Zs+ CSCs, but not in Zs− CSCs, after anti-cancer drug treatment (Fig. 1C). These data suggested a 
relationship between gene expression and DNA methylation levels. In addition, our findings showed that gene 
expression and DNA methylation are altered in Zs+ CSCs after treatment with anti-cancer drugs. Because CSCs 
are drug resistant, we performed gene set enrichment analysis using microarray data to identify the genes which 
contribute to drug resistance. Although we attempted to identify gene sets which were enriched in Zs+ CSCs but 

Figure 1.  Global methylation and expression level analysis of CSCs and non-CSCs. (A) Experimental scheme 
of global transcriptome and methylome analysis. Zs Green expressing CSCs (Zs+) and low expressing non-
CSCs (Zs−) were separated by cell sorting and cultured in the presence or absence of anti-cancer drugs for 
72 hrs. (B) Heatmap for global transcriptome analysis. (C) Manhattan plot for global methylome analysis. 
Vertical axis represents the depth of sequence data.
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not in Zs− non-CSCs after 5FU or CDDP treatment, the background noise, which may be due to the complexity 
of cancer cell populations and molecular regulations at trans-omic levels such as methylation and transcrip-
tion, attenuated the identification of any gene set which was responsible for the nature of CSCs. On treatment 
with anti-cancer drugs, the level of DNA methylation was altered in chemoresistant CSCs, but not in non-CSCs. 
Therefore, in this study, we aimed to simultaneously analyse the transcriptome and methylome data to identify 
the genes responsible for drug resistance.

New trans-omics analysis of transcription and DNA methylation.  We first summarised the infor-
mation on 5mC methylation from the data as follows:

Consider the observations for methylation level x i n j p n{ ; 1, , , 1, , , 1, , }ij ijα= … = … = …α , where 
xijα is a value of the methylation level for the ith observation and jth gene at αth genetic loci. Data on the loci are 
presented as intervals. It is logical to assume that each methylation level xijα is a discretised realisation of function 
x l( )ij  at locus αlij ; therefore, we transformed the observed methylation levels x n{ ; 1, , }ij ijα = …α  into functions 
x l( )ij . Furthermore, we assumed that the methylation level peaked at the centre of each interval of methylated loci 
and gradually decreased as it moved away from the centre. One of the most effective techniques for transforming 
the data into a function is the basis expansion method13. Using this idea, we assume that the function x l( )ij  is 
expressed as the following linear combination:
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2  indicates that the methylation interval for xijα equals s6 ijα. These functions are constructed so that peak 

positions of l( )ijφ α  coincide with the loci lijα. Then, Equation (1) was constructed so that αxij  equals the integration 
of each term over the whole region. We can treat the methylation level at the continuous loci rather than discrete 
ones by smoothing the observed data.

An example of a curve x l( )ij  for methylation levels is presented in Fig. 2A–C. We obtained total methylation 
levels at arbitral loci by integrating (1) over [a, b], where a and b are arbitral genetic loci. For example, a total 
methylation level in the promoter region is obtained by setting a = −∞ and b as the endpoint of the promoter 
region. This integration corresponds to the calculation of cumulative distribution of Gaussian distribution, so it 
is difficult to analytically calculate if a b−∞ < < < ∞; however, it can be numerically calculated using standard 
software. We used this value for the trans-omics analysis to summarise the methylation data.

Figure 2.  Procedure for calculating the area of methylation. (A–C) Illustration for transforming the 
methylation level data into a function. (A) Example of observed methylation levels (points) and methylation 
regions (segments below). (B) Fitted Gaussian functions (black curves) for each methylation levels. (C) By 
summing up these functions, we obtained a methylation function.
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Next, we calculated the differences in methylation and expression between the onset of anti-cancer drug expo-
sure and 72 h after treatment. We focused on genes that affected methylation and expression and screened them 
as follows:

We denote xij∆  and ∆yij as differences in methylation and expression between the two time points for the ith 
subject and jth gene, respectively. We plotted the values of methylation and expression levels as shown in Fig. 3A. 
These values were standardised so that the average was 0 and standard deviation was 1. Small absolute values 

x y( 0, 0)ij ij∆ ≈ ∆ ≈  indicated little effect of anti-cancer drugs on methylation and expression, respectively, for 
jth gene (Fig. 3B,C). We calculated the squared norm = ∆ + ∆r x yij ij ij

2 2 2, and then excluded 5% of genes with 
smaller rij

2 (Fig. 3D). In our plots, the genes with the strongest response to anti-cancer drugs were plotted around 
the line “ = ±y x” (Fig. 3E). Higher methylation and lower gene expression were indicated in the zone around the 
line “ = −y x.” On liberation from the negative correlation line, there was not only a weak correlation but also 
large margin of error. Therefore, in this study, the group of genes in the “ 2 5± . °” range from “y x= − ” was 
selected for further analysis (Fig. 3F). We identified specific genes that were present in the CDDP + and 
5FU+ groups but not in CDDP− and 5FU− groups. To identify the critical genes that correlated with expression 
and methylation after treatment with anti-cancer drugs, we identified genes in the “ ± 2.5°” range from “y = −x” 
(Fig. 4A–C, Supplemental Tables 1–11, Fig. 5A,B). DNA methylation upstream of the gene is related to gene 
expression. Therefore, we identified genes using DNA methylation data upstream of the gene. We successfully 
identified two genes that were enriched in Zs+ CSCs treated with 5FU or CDDP, but not in Zs− non-CSCs 

Figure 3.  Illustration of the procedure for extracting genes. Genes with altered methylation or expression after 
anti-cancer drug treatment were identified.
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treated with 5FU or CDDP (Fig. 5C). Housekeeping genes, such as GAPDH and β-actin, were used as controls. 
We observed no changes in their expression before and after anti-cancer drug treatment (Supplemental Table 12).

Although we used “±2.5°” as the strong correlation range, it may not always be the best in all cases. It should 
be customised for each system. In this study, the range was spread from “0°” in small increments until we could 
identify the specific genes which were present in the high correlation region, i.e. CDDP and 5FU, for CSCs and 
not present in the region for non-CSCs.

Confirmation of critical targets using an animal model.  To investigate the relationship between the 
expression of these two genes and overall survival, we analysed the expression of these genes in oesophageal 
cancer using the gene expression omnibus database GSE1159514 and PrognoScan. MRPL36 was not related to 
the prognosis of oesophageal cancer (Supplemental Fig. 1). However, TRAF4 might be a critical gene for drug 
resistance. PrognoScan analysis revealed that higher TRAF4 expression was associated with bad prognosis in 
all gene sets (Fig. 6A–C). To determine whether TRAF4 is a critical gene for drug resistance, we overexpressed 
TRAF4 (OE-TE4 cells) and confirmed that the expression level of TRAF4 in OE-TE4 was 2.5-fold higher than that 
in parental TE4 cells (Fig. 6D). We then inoculated the OE-TE4 cells subcutaneously in immune-deficient mice. 
Both parental TE4 and OE-TE4 tumour volumes reached 100 mm3 in 10 days, which showed no significant differ-
ences in the durations of tumour development (data not shown). After the tumour volume reached to 100 mm3, 
the mice were administered 5-FU (20 mg/kg) every 2 days; the observation of mice for 20 days indicated that the 
tumour volume of parental TE4, but not OE-TE4, was significantly suppressed by 5-FU treatment compared with 
controls (Fig. 6E,F), indicating that TRAF4 plays a role in tumour development when exposed to 5-FU, and that 

Figure 4.  Relationship between methylation and expression levels. (A–C) Show differences in methylation and 
expression levels between the exposure time and 72 h after treatment. X-axis indicates the methylation area 
calculated by integrating the function depicted in Fig. 2C. Y-axis represents the differences in expression levels. 
(A) Upstream of genes. (B) Inside genes. (C) Downstream of genes.
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TRAF4 may be a critical target for overcoming chemotherapeutic resistance of CSCs. This study demonstrated 
that this novel trans-omics approach for analysing transcription and DNA methylation can identify genes which 
are critical for drug resistance.

Figure 5.  Identification of genes correlated with the expression and methylation of CSCs. Identification of 
genes in the “±2.5°” range from “y = −x”. The angles of polar representation for each gene are shown in the 
Arc column. The values in the declination column show each deviation from the angle of −45° or 135° in polar 
coordinate. Methylation was upstream of the gene. (A) The genes in the second quadrant of CSCs treated with 
5-FU for 72 hrs. (B) The genes in the second quadrant of CSCs treated with CDDP for 72 hrs. (C) Venn diagram 
of genes in the “±2.5°” range from “y = −x”. There were three common genes between CSCs treated with 5-FU 
and CDDP.
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Discussion
In this study, we investigated the profiles of 5mC DNA methylation using smooth functions to extract the under-
lying information. The areas of these functions were used as the levels of methylation. In our Gaussian fitting 
approach, we defined s_ijα so that the value when multiplied by 6 equals the methylation interval for x_ijα, because 
the Gaussian type function generally includes 99.73% of their distribution within ±3σ (σ: standard deviation) 
from the centre of the peak. Furthermore, the differences in methylation and expression levels were compared 
between the time of exposure to anti-cancer drugs and 72 h after treatment to detect genes with altered levels of 
methylation and expression. As previously mentioned, the area of |∆x_ij | or |∆y_ij | close to zero shows little effect 
of anti-cancer drugs on methylation and expression, respectively. The genes with a strong correlation between 
methylation and expression levels are concentrated around the line “y = −x”. Therefore, we could find some genes 
that lead to a decrease in methylation level and increase in expression, or that show an increase in methylation 
and decrease in expression. However, as shown in Fig. 4, most genes had little correlation between the changes in 

Figure 6.  PrognoScan analysis of TRAF4 in oesophageal cancer. (A) Oesophageal cancer data posted in 
PrognoScan. (B) TRAF4 expression plot. Red plots indicate patients with highly expressed TRAF4. Blue plots 
indicate patients with low TRAF4 expression. (C) Kaplan–Meier plot. Red line indicates patients with high 
TRAF4 expression. Blue line indicates patients with low TRAF4 expression. (D) Quantitative RT-PCR of TRAF4 
expression level in the parental TE4 and TRAF4-overexpressing OE-TE4 cells. The data were normalised by 
GAPDH expression level. (E) Representative tumour tissues excised from mice 20 days after tumour volumes 
reached 100 mm3, and 5-FU (20 mg/kg) was administered every 2 days. (F) Relative tumour volumes are shown 
20 days after tumour volumes reached 100 mm3, and 5-FU was administered, corresponding to (E).
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methylation and expression after exposure to anti-tumour agents. In addition, it is important that the method be 
established to identify genes having a strong correlation between methylation an dexpression.

This analysis allowed the identification of TRAF4 as an important gene for chemoresistance. TRAF4, a mem-
ber of TRAF family15–17, was expressed in breast carcinomas and was the first TRAF member to be upregulated in 
human carcinomas18. Abnormal TRAF4 expression has been reported in certain cancers, including breast, lung 
and prostate cancers19,20. TRAF4 is expressed in the nucleus and is correlated with poor prognosis in breast cancer 
patients21. Moreover, TRAF4 expression was associated with invasion, migration and metastasis in breast cancer. 
TRAF4 is regulated by TGF-β signaling22 and is highly expressed in lung cancer. It may be a possible molecular 
target for lung cancer therapy23. The involvement of TRAF4 in the biological behaviour of cancer cells has been 
reported. However, to the best of our knowledge, this study showed for the first time that TRAF4 is important 
for the possible regulation of functions in CSCs of human oesophageal cancer, which was indicated by the com-
bination of computational and animal studies, further supporting the rationale for the large scale screening of 
therapeutic targets of CSC drug development.

Methods
Cell culture and sorting.  We purchased the human gastrointestinal cancer cell line of the oesophagus TE-4 
from the Japanese Collection of Research Bioresources Cell Bank (Ibaraki, Japan). TE-4 cells were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% foe-
tal bovine serum (FBS; Hyclone, Logan, UT, USA) and penicillin–streptomycin (Sigma-Aldrich) at 37 °C in 5% 
CO2. Retroviruses were prepared using the platinum-A retroviral packaging cell line (Plat-A). Plat-A cells were 
cultured in DMEM supplemented with 10% FBS, 100 U/ml penicillin (Life Technologies, Gaithersburg, MD, 
USA), 1 µg/ml puromycin (Sigma-Aldrich) and 10 µg/ml blasticidin (Sigma-Aldrich). To generate retroviruses, 
we transfected Plat-A cells with the retroviral vector pQCXIN-ZsGreen-cODC, which encodes the ZsGreen-
cODC fluorescent fusion protein using FuGENE6 transfection reagent (Promega Corp., Madison, WI, USA). The 
medium was changed 1 day after transfection, and 1 day later, the supernatant containing the retroviruses was 
collected. To induce cancer cell formation, we added this supernatant and 6 mg/ml polybrene (Sigma-Aldrich) to 
DMEM containing the cultured cancer cells. The cells with high ZsGreen-cODC (Zs+) and low ZsGreen-cODC 
(Zs−) expressions were separated after two rounds of fluorescence-activated cell sorting (FACS) and defined as 
CSCs or differentiated cancer cells, respectively. Cells were washed with phosphate-buffered saline and trypsin-
ised using 0.25% trypsin-ethylenediaminetetraacetic acid (Life Technologies). Then, cells were sorted using a BD 
FACS Aria II cell sorting system (Becton-Dickinson, Franklin Lakes, NJ, USA), after which CSCs and non-CSCs 
were cultured in the presence of 5-FU (10 μM) or CDDP (10 μM) for 72 h.

DNA methylation analysis.  DNA methylation was analysed in CSCs and non-CSCs. Methylated proteins 
were immunoprecipitated from the cell lysate using a methylation-binding protein. Samples were sequenced 
(Takara, Kyoto, Japan) to obtain whole genome-wide DNA methylation data.

Microarray analysis.  The extracted total RNA (500 ng) was labelled with cyanine-3 using the low input 
quick amp labelling kit (Agilent Technologies, Tokyo, Japan) after checking for sufficient quality of microRNA 
microarray experiments. The cRNA yield and dye incorporation were monitored using a Nanodrop ND-2000 
spectrophotometer. Labelled RNAs were hybridised to the Agilent mouse GE 8 × 60 K microarray in a rotating 
Agilent hybridisation oven for 17 h at 65 °C. After hybridization, the microarrays were washed at room temper-
ature for 1 min with GE wash buffer 1 (Agilent) and then with GE wash buffer 2 (Agilent Technologies) at 37 °C. 
Microarrays were then dried and briefly centrifuged. Fluorescence signals were determined using an Agilent DNA 
microarray scanner (G2565CA) after stringent washes with GE wash buffers 1 and 2 (Agilent Technologies) for 
1 min each. The fluorescence signals were analysed using feature extraction software 10.10 (Agilent Technologies).

PrognoScan analysis.  Relationships between gene expression levels and cancer prognosis were analysed 
using the PrognoScan data base (http://www.abren.net/PrognoScan/). Use of these data does not require written 
informed consent because they are available online.

Animal experiments.  Parental TE4 cells or KD-TE4 cells were injected subcutaneously in 4–6-week-old 
female NOD-SCID mice with diabetes/severe combined immunodeficiency (CLEA Japan, Tokyo, Japan). After 
the tumour volume reached 100 mm3, the mice were administered 5-FU (20 mg/kg) every 2 days. The tumours 
were resected 20 days after the tumour volume reached 100 mm3. All methods were carried out in accordance 
with relevant guidelines and regulations, under the experimental protocol, which was approved by the licensing 
committee of animal experiment at Osaka University.
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