Table 3 Performance analysis of GSAQ and GSVQ approaches for salinity stress in rice.

From: Statistical Approach for Gene Set Analysis with Trait Specific Quantitative Trait Loci

Methods

100

200

300

400

500

1000

2000

t

<0.5

<0.01

<0.001

<0.001

<0.001

<0.0001

<0.0001

(>0.5)

(>0.01)

(>0.01)

(>0.01)

(>0.01)

(>0.1)

(>0.01)

F

<0.5

<0.01

<0.001

<0.001

<0.001

<0.0001

<0.0001

(>0.5)

(>0.01)

(>0.01)

(>0.01)

(>0.01)

(>0.01)

(>0.01)

MRMR

<0.01

<0.01

<0.01

<0.01

<0.0001

<0.0001

<0.0001

(>0.1)

(>0.1)

(>0.01)

(>0.01)

(>0.01)

(>0.1)

(>0.01)

SU

<0.1

<0.1

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

(>0.1)

(>0.1)

(>0.1)

(>0.2)

(>0.01)

(>0.01)

(>0.5)

PCF

<0.01

<0.01

<0.01

<0.01

<0.01

<0.0001

<0.0001

(>0.01)

(>0.01)

(>0.01)

(>0.01)

(>0.01)

(>0.5)

(>0.5)

SRC

<0.01

<0.01

<0.01

<0.01

<0.01

<0.0001

<0.0001

(>0. 01)

(>0.1)

(>0.01)

(>0.01)

(>0.01)

(>0.001)

(>0.001)

SVM

<0.01

<0.01

<0.01

<0.01

<0.0001

<0.0001

<0.01

(>0.1)

(>0.01)

(>0.01)

(>0.01)

(>0.1)

(>0.1)

(>0.1)

  1. FDR: False discovery rate; Gene sets: gene sets obtained from each method; (.): the values in parentheses indicate the FDR value computed through GSVQ approach; t: t-score; F: F-score; MRMR: Maximum Relevance Minimum Redundancy; SU: Symmetrical Uncertainty; PCF: Pearson’s Correlation Filter; SRC: Spearman’s Rank Correlation filter; SVM: Support Vector Machine with Recursive Feature Elimination.