Table 3 Energy components (kJ/mol).

From: QM/MM study of the reaction mechanism of sulfite oxidase

MPT

 

\({{\boldsymbol{E}}}_{{\bf{QM}}/{\bf{MM}}}^{{\bf{TPSS}}/{\bf{SVP}}}\)

E DFT

\({{\boldsymbol{E}}}_{{\bf{bigQM}}}^{{\bf{TPSS}}/{\bf{SVP}}}\)

E disp

E MM

\({{\boldsymbol{E}}}_{{\bf{bigQM}},{\bf{tot}}}^{{\bf{TPSS}}/{\bf{SVP}}}\)

\({{\boldsymbol{E}}}_{{\bf{QTCP}}}^{{\bf{TPSS}}/{\bf{SVP}}}\)

E tot

MPD

R

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TS1

56.8

−26.1

60.9

−1.8

−4.5

54.6

77.0

48.8

IM

25.0

−82.8

21.2

−2.4

−3.0

15.8

46.3

−45.8

TS2

49.3

−97.7

50.3

2.8

2.3

55.4

56.9

−34.7

P

45.4

−96.6

41.9

3.9

0.8

46.6

43.7

−51.7

MPH

R

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TS1

39.3

−8.9

43.6

−2.0

−5.2

36.4

46.1

34.3

IM

−3.6

−79.6

0.8

0.3

−4.2

−3.1

2.8

−76.3

TS2

52.5

−98.8

51.4

2.0

−2.2

51.3

15.4

−84.6

P

47.1

−97.0

41.0

4.2

0.4

45.6

27.5

−71.1

MPO

R

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TS1

35.6

−10.0

36.6

−3.0

−4.0

29.6

42.9

26.9

IM

−9.6

−79.0

−7.4

−2.2

−3.1

−12.7

−6.4

−85.5

P

42.1

−96.0

35.3

−2.2

0.5

33.5

16.9

−87.7

  1. The energy components are defined in Eqns 3 and 5, except that \({{\boldsymbol{E}}}_{{\rm{M}}{\rm{M}}}={{\boldsymbol{E}}}_{{\rm{M}}{\rm{M}}12,{{\rm{q}}}_{1}=0}^{{\rm{b}}{\rm{i}}{\rm{g}}{\rm{Q}}{\rm{M}}}-{{\boldsymbol{E}}}_{{\rm{M}}{\rm{M}}1,{{\rm{q}}}_{1}=0}^{{\rm{b}}{\rm{i}}{\rm{g}}{\rm{Q}}{\rm{M}}}\) and \({{\boldsymbol{E}}}_{{\rm{D}}{\rm{F}}{\rm{T}}}={{\boldsymbol{E}}}_{{\rm{Q}}{\rm{M}}1+{\rm{p}}{\rm{t}}{\rm{c}}{\rm{h}}23}^{{\rm{B}}3{\rm{L}}{\rm{Y}}{\rm{P}}/{\rm{T}}{\rm{Z}}}-{{\boldsymbol{E}}}_{{\rm{Q}}{\rm{M}}1+{\rm{p}}{\rm{t}}{\rm{c}}{\rm{h}}23}^{{\rm{T}}{\rm{P}}{\rm{S}}{\rm{S}}/{\rm{S}}{\rm{V}}{\rm{P}}}\) (the latter two terms are not explicitly shown, because \({{\boldsymbol{E}}}_{{\rm{QM1}}+{\rm{ptch23}}}^{{\rm{TPSS}}/{\rm{SVP}}}\) agrees with \({{\boldsymbol{E}}}_{{\rm{QM}}/{\rm{MM}}}^{{\rm{TPSS}}/{\rm{SVP}}}\) within 9 kJ/mol (showing that the MM correction is small for the intermediate QM system). Thus, \({{\boldsymbol{E}}}_{{\rm{tot}}}\) = \({{\boldsymbol{E}}}_{{\rm{bigQM}},{\rm{tot}}}^{{\rm{TPSS}}/{\rm{SVP}}}+{{\boldsymbol{E}}}_{{\rm{DFT}}}+{{\boldsymbol{E}}}_{{\rm{QTCP}}}^{{\rm{TPSS}}/{\rm{SVP}}}-{{\boldsymbol{E}}}_{{\rm{QM}}/{\rm{MM}}}^{{\rm{TPSS}}/{\rm{SVP}}}\)  = \({{\boldsymbol{E}}}_{{\rm{bigQM}}}^{{\rm{TPSS}}/{\rm{SVP}}}+{{\boldsymbol{E}}}_{{\rm{disp}}}+\)\({{\boldsymbol{E}}}_{{\rm{MM12}},{{\rm{q}}}_{{\rm{1}}}={\rm{0}}}^{{\rm{bigQM}}}-{{\boldsymbol{E}}}_{{\rm{MM1}},{{\rm{q}}}_{{\rm{1}}}={\rm{0}}}^{{\rm{bigQM}}}\) \(+{{\boldsymbol{E}}}_{{\rm{DFT}}}+{{\boldsymbol{E}}}_{{\rm{QTCP}}}^{{\rm{TPSS}}/{\rm{SVP}}}-{{\boldsymbol{E}}}_{{\rm{QM}}/{\rm{MM}}}^{{\rm{TPSS}}/{\rm{SVP}}}\).