Table 1 Classification accuracies for fine grained taxonomy of fruits and vegetables.

From: Machine learning approaches for large scale classification of produce

Fruit Type

Number of Classes

Number of Samples

Visible

NIR 1

NIR 2

Composite

(Organic/Inorganic)

(0–700 nm)

(700–1100 nm)

(1100–2000 nm)

(0–2000 nm)

Apples

8

13808

0.915

0.943

0.836

0.906

Strawberries

2

980

0.828

0.84

0.917

0.942

Grapes

2

947

0.973

0.906

0.867

0.921

Oranges

4

2599

0.94

0.911

0.987

0.981

Mushrooms

3

1217

0.99

0.99

0.941

0.943

Onions

2

2686

0.99

0.99

0.892

0.903

Bell Peppers

5

1483

0.975

0.959

0.954

0.945

Jalapeno Chilli

3

3292

0.964

0.9

0.979

0.976

Potatoes

3

5541

0.981

0.949

0.962

0.963

Tomatoes

6

3718

0.945

0.906

0.876

0.902