Table 1 Nature of equilibria of Lotka-Volterra system (4) (refer to Supplementary information for the analytical solution).
From: Asymptotic stability of a modified Lotka-Volterra model with small immigrations
Model | Without immigrants | Small immigration | |||
---|---|---|---|---|---|
C(x) = c; D(y) = 0 | C(x) = c/x; D(y) = 0 | C(x) = 0; D(y) = d | C(x) = 0; D(y) = d/y | ||
Type I (Linear) \(\{\begin{array}{c}\frac{{\rm{d}}x}{dt}=rx-axy+C(x)\\ \frac{{\rm{d}}y}{dt}=bxy-my+D(y)\end{array}\) | Unstable, limit cycle exists | Stable coexistence | Stable coexistence | Stable coexistence | Stable coexistence |
Type II (Hyperbolic) \(\{\begin{array}{c}\frac{{\rm{d}}x}{dt}=rx-\frac{axy}{1+hx}+C(x)\\ \frac{{\rm{d}}y}{dt}=\frac{bxy}{1+hx}-my+D(y)\end{array}\) | Unstable | Locally asymptotically stable* | Locally asymptotically stable* | Locally asymptotically stable* | Locally asymptotically stable* |
Type III (Sigmoid functional response) \(\{\begin{array}{c}\frac{{\rm{d}}x}{dt}=rx-\frac{a{x}^{2}y}{1+h{x}^{2}}+C(x)\\ \frac{{\rm{d}}y}{dt}=\frac{b{x}^{2}y}{1+h{x}^{2}}-my+D(y)\end{array}\) | Locally asymptotically stable (β > 0) | Locally asymptotically stable* | Locally asymptotically stable* | Locally asymptotically stable* | Locally asymptotically stable* |