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. We studied the dynamic behavior of human hematopoietic stem cells (HSC) on the in vitro model
of bone marrow surfaces in the absence and presence of chemokine (SDF1a). The deformation and
migration of cells were investigated by varying the chemokine concentration and surface density of
ligand molecules. Since HSC used in this study were primary cells extracted from the human umbilical
cord blood, it is not possible to introduce molecular reporter systems before or during the live cell
imaging. To account for the experimental observations, we propose a simple and general theoretical
model for cell crawling. In contrast to other theoretical models reported previously, our model focuses
on the nonlinear coupling between shape deformation and translational motion and is free from any

. molecular-level process. Therefore, it is ideally suited for the comparison with our experimental results.

: We have demonstrated that the results in the absence of SDF1a were well recapitulated by the linear

. model, while the nonlinear model is necessary to reproduce the elongated migration observed in

. the presence of SDF1c. The combination of the simple theoretical model and the label-free, live cell
observations of human primary cells opens a large potential to numerically identify the differential
effects of extrinsic factors such as chemokines, growth factors, and clinical drugs on dynamic
phenotypes of primary cells.

The balance between self-renewal and differentiation of somatic stem cells is regulated by their microenviron-
ment (called stem cell “niche”). For example, the dormancy of the most primitive hematopoietic stem cells (HSC)
* is maintained by adhesion to and interaction with the bone marrow niche'->. Interactions of stem cells with the
. marrow niche actually play crucial roles in blood cancers. In acute myeloid leukemia, leukemia initiating cells
. remain dormant in the marrow niche and thus can hardly be eliminated by chemotherapy*-°. HSC-niche interac-
tions are regulated by a chemokine, stromal cell-derived factor 1ae (SDF1«), secreted in the bone marrow, which
is specifically identified by CXCR4 protein expressed on HSC”-'°.

To date, several clinical drugs interfering with SDF1a-CXCR4 interactions have been approved for cancer
treatment. However, the exact mode of function of such drugs (antagonist, agonist, or inhibitor) compared to nat-
urally occurring SDF 1 still remains controversial, because the drugs might harm the function of HSC through
off-target effects. Therefore, it is highly important to develop a novel tool to quantitatively assess the influence of
chemokines and drugs on human HSC functions beyond the commonly used cell phenotypes.

Recently, we fabricated the surrogate niche model surface based on planar lipid membranes displaying pre-
cisely defined concentrations of ligand molecules SDF1« or N-cadherin'!. By means of a self-developed force
measurement assay, we have quantitatively discriminated the adhesion strength of healthy HSC from that of
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leukemia blasts in the presence and absence of soluble SDF1a.. The power spectrum analysis of stochastic mor-
phological dynamics in Fourier space further unraveled that the energy dissipation of HSC by oscillatory defor-
mation is strongly damped by the presence of physiological level of soluble SDF1c (5 ng/mL). This enables one to
quantitatively assess and compare the influence of SDF1« and drugs on the “dynamic phenotypes” of HSC, which
is not accessible by commonly used image analysis platforms in real space.

To date, several theories have been developed to model cell dynamics and the underlying mechanisms. For
example, Levine et al.' and Sawai et al.!* have employed the so-called phase field to represent the motion of cell
boundaries induced by the chemical reactions inside a cell. However, these models could be applied only for cell
lines genetically expressing reporter molecules, but not for primary human subjects. Moreover, these models did
not explicitly consider the adhesion between the cell and substrate, although the adhesion-induced contraction
forces drive cell migration. Along this line, the two-dimensional model of Ziebert and Aranson introduced the
degrees of freedom for adhesion', and Tjhung et al. have generalized the theory of active polar fluids to study
crawling of a three-dimensional cell'®. But, the effects of extrinsic factors on adhesion and migration have not
been investigated. Theories of active gel have also been utilized as one-dimensional models of motile cells, but
they are currently not able to handle the shape deformation!®'. Last but not least, it should be noted that all the
models mentioned above are expressed by a complicated set of partial differential equations, which involves fairly
heavy numerical computations. Therefore, the quantitative comparison of these models with the data generated
from primary human samples is still not practically possible.

Ohta et al. recently proposed a simple physical model of crawling cells that includes the frictional effect
between substrates and cells into the time-evolution equations'®. This model, represented by ordinary differ-
ential equations, enables us to qualitatively reproduce both a stationary motion of fish keratinocyte driven by
time-independent deformation forces and a non-stationary motion of Dictyostelium discoideum driven by
time-dependent, excitable forces.

In the present study, we extended this strategy to model the deformation and migration of primary human
HSC in the absence and presence of extrinsic SDF1a. The frictional coupling between HSC and the surrogate
surfaces can be controlled precisely by the self-assembly of adhesion ligands. To investigate the non-stationary
dynamics (active deformation and migration) of HSC, our new mathematical model introduces the frictional
coupling and oscillatory internal forces. By sharply focusing on deformation and migration, which are accessible
from the label-free, live cell images, our models can be quantitatively compared to the experimental results. This
enabled us to numerically represent the effect of chemokine SDF-1c as the nonlinear coupling in the equation of
motion, which distinctly alters the persistence of migration trajectories. Such an interdisciplinary combination of
dynamic phenotypes of cells and theoretical models opens new avenue to discriminate differential functions of
clinical drugs compared to that of natural chemokine.

Model of Crawling Cells
In this section, we describe our model for cell crawling. A migrating cell on a substrate is approximated as a
two-dimensional object. Deformation around a circular shape is represented as

RO, t) = Ry(1 + 6R(0, 1)), 1)

where R, is the radius without deformation and @ is the angle from the x-axis. The deviation 6R(0, t) can be
expanded in a Fourier series as

6R(B, t) = S (1)e™.
2 ol @)

Since uniform expansion and contraction of a circular cell are prohibited and a translational motion of the
cell is represented by the migration velocity of center of mass v= (v, ,), the modes ¢, and ¢, should be removed
from the Fourier series (2). We write the migration velocity as v, =vcos { and v, =vsin (. Similarly the Fourier
components of deformations are set as

c = S_neinﬁn)

2 (3)

n

with the real amplitude s, and the real phase 6,,.
The details of our model for cell crawling are described in Appendix. The basic time-evolution equations for
a migrating cell are given by

v =2[ls; 53 (4)
(=30,—-20,-9, (5)
and
dSz b0V2 )
— = — - 60 20 t t),
" KoSy + 5 cos(60,; + 20,) + g (1) + &,(¢) ©)
de, byv? . Faal0)
2 = 27 Gin(60,, + 21) + 1),
7 452 Sln( 23 V) 5, 772( ) (7)
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d dyv’
B sy + OTV cos (60,5 + 30,) + g21) + &),

dt (8)

do, v’ a0
—_—= —— 60,; + 30,) + t),
at 1253 Sln( 23 ) 5 773( ) (9)

where 0,; =0, — 0;. Equation (4) implies that the cell can migrate only when both deformation modes s, and s,
exist. Therefore, the present model is a model of deformation-induced migration. The proportional constant || is
the mobility which characterizes the degree of friction between the cell and substrate. The constant phase differ-
ence ¥, in eq. (5) is fixed as ¥, = 7 throughout the present paper. This means that if 6, = 6; =0 the cell with two
convex parts in the front and one convex part in the rear (i.e., Y-shaped cell) migrates to the left along the x axis.
The time-evolution eqs (6-9) consist of four parts. The shape relaxation occurs with the relaxation rates , and ;.
In the numerical simulations given below, we set k3 =2k, to reduce the free parameters. The nonlinear coupling
between deformation and migration is expressed by the terms with the coefficients b, and d,. We assume that
these constants are positive so that the cell elongates along the direction of the migrating velocity'®. The deforma-
tion forces acting on the n-th deformation mode are denoted by g")(f) whose form is given shortly below. The
other time-dependent terms &, and ), are the random forces acting on the amplitude and the angle of deforma-
tions, respectively. We assume that these are not time-correlated and distributed uniformly in the interval
—¢g < §, < egand—e <1 < e The constantse, and € are fixedase = 0.2and ¢, = 0.025 throughout the pres-
ent paper.

In our previous paper'®, the forces are generated by the so-called coherence resonance to represent a stochastic
and excitable property in a consistent manner with the experiments on Dictyostelium cells'. On the other hand,
our previous experimental results! suggest that human hematopoietic stem cells predominantly undergo peri-
odic deformation. Therefore, in this study, we introduced oscillatory deformation forces, such as:

2
1 4+ cos(wt
¢ =¢? + gé”[#] ,

2 (10)

1+ cos(wt + ¢,) §

¢ = g + g® |
2 (11)

with the frequency w and the phase difference ¢,. In the numerical computations given below, we choose these
quantities as w=27/10, ¢,= —/4. Note that the period T'= 27/w= 10 corresponds to 5min which remains in the
same order of magnitude of the observed cell deformation frequency in the present experiments''. The constants

gc(”) and go(") (n=2, 3) are positive. To reduce the number of the free parameters, we put the relations among these

constants as gc(z) = gc(a) =g 0(2) =2¢g, and go(3) =g.
From the solutions of eqs (4-9), the location and the shape of the cell at each time are determined as
x(t) = x,,(t) + 7(t) cos(c) (12)
y(t) =y, @) + r(t) sin(a), (13)
with
r(t) = 1,[1 + s, cos2(ac — 6,) + s5 cos3(a — 63)], (14)

where a changes from 0 to 27 and x,, and y,, denote the location of the center of mass of the cell.

We make several remarks about the model given by Eqs (4-9). This is probably one of the simplest model sys-
tems showing that deformation of a cell induces its migration. It was derived solely by symmetry argument. The
product of the symmetric second and third rank tensors produces a vector. This relation between the deformation
and translational velocity causes both elongation and head-tail asymmetry of a cell and seems to hold generally
for crawling cells. We have introduced the internal forces to change the cell shape. When the force is constant, the
model produces migration with an elongated constant shape. As described explicitly in ref.!® when by, d, > 0, the
elongation of a cell is parallel to the migration direction whereas when by, d, <0, the elongation is perpendicular
to the migration direction as observed in keratocyte cells. The former case was considered in the present study.
To express an oscillation of cell shape, we have employed the time-dependent forces given by Eqs (10, 11). It is
mentioned here that this kind of active force is necessary for coarse-grained models in terms of a few modes of
deformation as in the case of amoeboid swimming". Our model does not include microscopic processes inside
cells, such as biochemical reactions and signal transduction. We will show in the following section that this sim-
plicity of the model is an advantageous point to compare quantitatively with the experiments of HSC since it is
not possible to introduce molecular reporter systems into primary cells from human donors.
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Figure 1. Schematic representation of (a) experimental system and (b) theoretical variables where g stands
for the n-th deformation force. The angle between the migration velocity and the x axis is given by ¢. (c)
Tracking of cell center and periphery from the phase contrast images. (d) Cell trajectory for 1 h. Scale bar:

10 pum.

Results and Discussion

Analysis of Migration and Deformation. Figure 1 displays the schematic illustrations of (a) the exper-
imental system and (b) the theoretical model. The superposed snapshots of a migrating human HSC and the
trajectory are depicted in panels (c) and (d), respectively. The center of mass was extracted from each frame of
live phase contrast images captured at t=t,, t,, t;... as in Fig. 1(c). The trajectory was recorded over 1 h with the
time interval of 40s.

Figure 2 shows (a) the forces acting on the cell in our model, and (b) and (c) the experimental analysis of cell
deformation. Characteristic spatio-temporal patterns from stochastic dynamics of HSC was extracted as fol-
lows!20-21_ First, the peripheral edge of the cells was defined from the phase contrast time-lapse images, and
then the radial distance R between the center of mass and periphery was plotted in polar coordinate, R(, t) as in
Fig. 2(b). From these data, the autocorrelation function was calculated as

(R(O + AD, t + AHR(O, 1))
(R(0, %) (15)
The autocorrelation maps of HSC exhibited much poorer features compared to the autocorrelation function

maps of cancer cells?!, because HSC is a compact cell whose interior is mostly filled with cell nucleus. In this study,
we analyzed the power spectrum from the Fourier transformation of shape deviation R,,(t) = (1/2)

fzw d9R(0, t) exp (imf)*>*:

L(A0, At) =

[, = (R, (DR, (1)). (16)

Note that the isotropic expansion/contraction (m = 0) and the translational motion (m = 1) are not assessed,
since we took the center of mass as the origin of inertial frame. Here, the cell deformation is originated from
active processes that is driven by energy consumption, such as bending of cell membranes and remodeling of
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Figure 2. (a) Deformation forces g, and noises &, and 7, (n=2, 3) acting on the amplitude and the direction
of the force, respectively. (b) Parameterization of deformation amplitude R(6, ), and (c) Power spectrum of cell
deformation I,,. Scale bar: 10 pm.

cytoskeletons?*?*. Thus, the mode analysis of power spectra enables one to identify the predominant mode of
deformation that HSC dissipates the energy. The results are displayed in Fig. 2(c).

Migration and Deformation in the Absence of Chemokine. Figure 3(a-c) represents the experimen-
tally traced migration trajectories of HSC on model niche surfaces displaying SDF1« at the average intermo-
lecular distance between the neighboring neutravidin molecules (d) =6, 18, and 34 nm, respectively. Each line
coincides with a trajectory monitored for 1 h. These three conditions were selected based on our previous account,
where we quantified the adhesion strength of HSC to the membrane-based bone marrow niche model display-
ing SDF1a by using microinterferometry and the self-built pressure wave assay''. Using the pure phospholipid
membranes as the control, the transition from strong to weak adhesion was found at (d) =10-15nm. Thus,
for simplicity, we define substrates with (d) =6 nm as “sticky”, (d) = 18 nm as “intermediate” and (d) =34nm
as “sloppy” for the comparison with the model. When the niche surface was “sticky”, ((d) = 6 nm), almost no
translocation could be observed, suggesting that cells undergo mainly a random spinning motion (Fig. 3(a)).
In case of an “intermediately sticky (intermediate)” surface ((d) = 18 nm), some trajectories showed a distinct
elongation (Fig. 3(b)). When the surface became “sloppy” ((d) = 34 nm), the cells seemed to be unpinned from
their initial positions, exhibiting more stretched migration trajectories (Fig. 3(c)). The magnitude of shape defor-
mation for each value of (d) will be discussed later in the section “Quantitative Comparison of Experiments and
Simulations”

Now we carry out numerical simulations of our model to compare with the experiments. Among the three free
parameters 7, K, and g, in our model, the mobility || is of most importance since it should be directly related to
the experimentally accessible quantity (d). Since the relation between these two quantities is not known exper-
imentally, we set two conditions that are necessary from the physical point of view. One is that the mobility is
proportional to the free area on the substrate, i.e., |y| o< (d)*> — a* where a is the diameter of the neutravidin mol-
ecules, a=5.2nm?*. The other is that, for large limit of (d), the mobility should approach a finite value otherwise
the migration velocity becomes infinitely large. Therefore, we approximate the relation between || and (d) by the
interpolation formula for (d) >a
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Figure 3. Migration trajectories of HSC on membrane displaying SDF1a at (d) = (a) 6nm, (b) 18 nm, and (c)
34nm for 1 h. The corresponding theoretical trajectories obtained from five independent runs for the linear case
(by=d,=0) are shown in panels (d-f), respectively. The values of the parameters in the simulations are listed

in Table 1. The radius of the three concentric circles is 2, 4 and 6 in the dimensionless unit. These corresponds
to 10 4m, 20 pm and 30 pm in the experimental trajectories. The data of the trajectories for 880 < t < 1000 are
plotted.

sticky 2.0 1.5 0.12
interm. 5.0 1.0 0.1
sloppy 7.0 0.8 0.07

Table 1. Parameters in the linear case b, = d,=0. The values on the lines of sticky, interm., and sloppy were
used to obtain Fig. 3(d-f), respectively.

<d>2 _ a2
% + oi{d) + oy(d)

I = 5

17)
where the constants o, o, and o, are to be determined.

In the present theory, we employ the space and time units such that Ry =1 and the relaxation rate of the sec-
ond deformation mode k,=1 in the intermediate surfaces. Since the cell diameter is about 10 zm, we have the
correspondence 5 um =1 for the length unit. The relaxation rate of deformations is not available experimentally.
Here we assume the correspondence that 0.5min =1 for the time unit. For example, the time duration of the
experimental trajectories in Fig. 3 is 1 h which means 120 in the theory. We will see shortly below that this corre-
spondence gives us a quantitative coincidence in comparison between the theory and experiments.

Figure 3(d-f) represent theoretical trajectories of the migration of cells calculated from five independent runs
for a linear case (b,=d,=0), corresponding to the “sticky”, “intermediate”, and “sloppy” surfaces, respectively.
Parameters used in the linear case are listed in Table 1. We have changed the parameters; the friction constant
1/]%), the relaxation rates k,, and the magnitude of the deformation force g,. All of them decrease by decreasing
the degree of stickiness. This is required from the physical point of view since the cell is softer and the defor-
mation force is weaker for large (d). The values of the parameters such as |y| =2, 5, and 7 in Table 1 have been
chosen such that the simulation results agree with experiments as satisfactorily as possible. By the correspond-
ence between || =2, 5, and 7, and (d) =6, 18, 34 nm, respectively, the coefficients in eq. (17) are determined as
oy/a*=—0.594, 0,/a=0.585 and 0, =0.640 x 10~ .. It is notable that the theoretical model seems to well explain
the qualitative tendency suggested by the experimental data: the increase in (d) enables the cells to explore the
wider region. On a sticky surface (Fig. 3(d)), the cell is strongly pinned on the surface, showing no remarkable
translocation of its center of mass. This was attributed to a random rotating motion of a poorly deformable cell''.
On an intermediate surface (Fig. 3(e)), the cell started translational movement driven by the deformation in m=2
and 3. Finally, on a sloppy surface (Fig. 3(f)), the trajectories are further expanded. Therefore, the theoretical
behavior in Fig. 3(d-f) is qualitatively consistent with the experimental observations in Fig. 3(a—c).
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Figure 4. Influence of soluble chemokine SDF1« on migration trajectories of HSC. The experimental results
measured on surrogate surfaces displaying membrane-anchored SDF1« at (d) = (a) 6nm, (b) 18 nm, and (c)
34nm for 1 h. The corresponding theoretical trajectories obtained from five independent runs for the non-linear
case (b, =d,=3.0) are shown in panels (d-f), respectively. The values of the parameters in the simulations are
listed in Table 2. Others are the same as those in the caption of Fig. 3.

sticky 3.0 1.2 0.1
interm. 7.5 1.0 0.08
sloppy 9.5 0.9 0.065

Table 2. Parameters in the nonlinear case b, = d, = 3.0. The values on the lines of sticky, interm., and sloppy
were used to obtain Fig. 4(d-f), respectively.

Influence of Chemokine on Deformation and Migration. In the next step, we investigated how
chemokine in solution (SDF1c) influences the deformation and migrational motion of HSC. Figure 4(a—c) repre-
sents the migration trajectories of HSC on surrogate surfaces functionalized with SDF1a at (d) =6, 18, and 34 nm,
respectively. Different from the results presented in Fig. 3(a—c), the experiments were performed in the presence of
soluble SDF1a (5ng/mL) in the medium, which is relevant to the physiological level in bone marrow. At (d) =6nm
(Fig. 4(a)), HSC exhibited no clear sign of translational motion, undergoing a localized random motion. The area
in which HSC moves seems slightly larger than what we found in the absence of SDF1« (Fig. 3(a)). The increase
in (d) to 18 nm (Fig. 4(b)) and 34nm (Fig. 4(c)) leads to the stretching of trajectories. Compared to the corre-
sponding data in the absence of SDF1« in solutions (Fig. 3(b,c)), HSC traveled over much larger areas. In fact, the
start-to-end distance of some trajectories at (d) =34 nm (Fig. 4c) exceeded 40 um. Though SDF1«v in the medium
acts as a competitor to membrane-anchored SDF1q;, our finding cannot be explained only by the decrease in
adhesion area due to the competitive binding. In fact, the power spectrum analysis indicated that the magnitude
of deformation is significantly damped by the presence of soluble SDF1a'!, suggesting that not only the frictional
coupling but also the deformation is affected by the presence of soluble chemokine.

Figure 4(d-f) represent theoretical trajectories of the migration of cells calculated from five independent runs
for “sticky”, “intermediate” and “sloppy” surfaces, respectively where the nonlinear coupling constants were put as
by=d,=3.0. The parameters used in this nonlinear case are summarized in Table 2. As in the linear case, we have
made the frictional coupling (cx 1/|7]), the relaxation rates and the magnitude of the deformation forces decrease
by decreasing the degree of the stickiness. The coeflicients in eq. (17) are chosen as o/a? = —0.295, ,/a =0.273
and 0, =0.679 x 10~1. Note that the nonlinear effects account for the stretch of trajectories. In fact, comparing
the corresponding simulations (e.g. Figs 3(e) and 4(e)), it is evident that the trajectories for the nonlinear case
are more persistent. It is also found that the trajectories in the sloppy case in Fig. 4(f) are expanded, on average,
compared to those of the intermediate case in Fig. 4(e) consistently with the experimental trajectories shown in
Fig. 4(b,c).
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Figure 5. (a) Snapshots of a migrating cell in the absence of soluble SDF1a for three different values of (d). The
suffix indicates time, e.g., t,0o=100s. Comgarlson of (b) the sum of experimentally determined powers I, + I}
and (c) the sum of deformability (s;) + (s;) obtained theoretically. Blue: in the absence of soluble SDFla
(linear case), red: in the presence of soluble SDFla (nonlinear case). The error bars in the theoretical plot are
smaller than the size of the symbols. The experimental values of deformations are normalized as eq. (16)
including the higher modes, but the theoretical values are not. Thus, the direct comparison of the scale of the
vertical axis is not possible.

Quantitative Comparison of Experiments and Simulations.  The unique advantage of our model over
commonly used mathematical ones is the capability to quantitatively compare the experimental and theoretical
quantities. One of the parameters changed experimentally is the average distance (d). In our physical model, the
corresponding quantity is the mobility of cells on frictional surfaces. We have introduced the relation between
these two as eq. (17).

The next important experimental data useful to determine the coefficients in the equation of motion are the
magnitude of two principal modes of deformation; m =2 and 3. Figure 5(a) displays the snapshots of a migrating
cell in the absence of soluble SDF1« for three different values of (d). Figure 5(b) depicts the sum of deformability
[, + T} calculated from the power spectra as Eq. (16). One notes from Egs (1, 3 and 16) that s, = 2R, /R, and
therefore that I, + T}, = 0.2 for Ry=5 jzm corresponds to s} + s? = 0.032. This indicates that the theoretical
result in Fig. 5(c) reproduces the correct order of magnitude for the cell deformation observed experimentally
(Fig. 5(b)). Now we make more detailed comparison as described below.

The results obtained in the absence of soluble SDF1c are labeled in blue, while those obtained in the presence
of SDF1« in the medium are in red. The results suggested the presence of soluble chemokine SDF1a does not
cause a significant change in the magnitudes of deformation at (d) = 6 and 34 nm. However, at (d) = 18 nm, the
magnitude of deformation in the absence of chemokine was distinctly larger than the corresponding value in the
presence of chemokine. As presented in Fig. 5(c), this tendency was very well represented in our theoretical cal-
culations, too. The deformation parametrized as ¥ = (s7) + (s;) exhibits maximum for “intermediate” substrates
in the linear case (Fig. 5(c) blue) consistently with the panel (a). Note that the deformation in the linear case is
determined by the combination of the relaxation rate and the deformation force and is estimated as s, ~ g./%,,.
Such a simple estimation of the deformations is not possible for the nonlinear case. Nevertheless, the behavior in
Fig. 5(c) is consistent with the experiments in Fig. 5(b). Thus, our calculations capture the significance of active
deformation and the accompanied energy dissipation deduced from the power spectrum analysis.

When we look at the migration speed, the velocity determined from experiments increases by increasing (d)
and thus decreasing || both in the absence (blue) and presence (red) of soluble SDF1« (Fig. 6(a)). Figure 6(b)
represents the time-averaged absolute velocity |v| calculated from three independent simulation runs for linear
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Figure 6. Comparison of (a) migration velocity V determined from the experiments and (b) |v| obtained from
three independent simulation runs. Blue: in the absence of soluble SDF1« (linear case), red: in the presence of
soluble SDF1« (nonlinear case). Note that 1 gm/min in (a) corresponds to the dimensionless velocity 0.1 in (b).
The error bars in the theoretical plot are smaller than the size of the symbols.

no SDFla ex. 4.08£2.01 3.83+2.41 9.13£3.80
no SDFla th. 2 5 7

with SDF1a ex. 2.59+£1.53 6.38+£3.03 7.10£3.30
with SDFla th. 3 7.5 9.5

Table 3. Mobility || evaluated from the experimental data of the deformations and migrating velocity in the
absence and presence of SDF1c. The theoretical values are also given for comparison. The dimensionless values
were obtained by the relation s, =2R,/R, with R,=5 pum and the correspondence of the unity of dimensionless
velocity to 10 ym/min.

(blue) and nonlinear (red) cases. First of all, both experiments and simulations indicate that the migration veloc-
ity is not significantly altered by the presence of soluble SDF1c. The simulation suggests that the presence of
soluble SDF1a could result in a slight increase in the migration velocity for “intermediate” and “sloppy” surfaces,
while the experiments indicate that a statistically relevant difference could be identified only from the data at
(d) =34nm. Note that 1 gm/min in the experiments corresponds to the theoretical velocity 0.1 in the dimen-
sionless unit. Therefore, Fig. 6 indicates that a quantitative comparison is possible between the experiments and
theory.

From the experimental data of the deformations ', and I}, and migration velocity, one can estimate the mobil-
ity || from Eq. (4). Table 3 shows the values of the mobility obtained in this way, compared to the theoretically
chosen values. As presented in the table, the estimated values of the dimensionless mobility show the same ten-
dency as the theoretical ones within experimental uncertainties, indicating that the equation of motion (Eq.(4))
properly represents the migration of HSC.

Compared to the migration trajectories in the absence of soluble SDF1« at (d) = 18 nm (Fig. 3(b)) and 34 nm
(Fig. 3(c)), the corresponding trajectories in the presence of soluble SDF1« (Fig. 4(b,c) respectively) were clearly
stretched. Consistently, the theory also showed that the trajectories for the nonlinear case are more persistent. To
quantify this behavior, we evaluated the persistence time 7 (Fig. 7) and diffusion constant D (Fig. 8) of a migrating
cell both experimentally and numerically. The persistence time 7 is defined through the relation

C(t) = (cosC(0) cos((t) + sin¢(0) sin¢(t)) = exp(—t/T), (18)

where the time is shifted such that =880 is the time origin in the theoretical plots.

Figure 7 displays (a) schematic illustration of the trajectory for a sticky and sloppy conditions, (b) the exper-
imentally determined persistence time 7 and (c) the corresponding value obtained by averaging the data of 36
independent simulation runs. As presented in Fig. 7(b), the experimental results show that the persistence time
T increases as the increase in (d). Moreover, the experimentally determined persistence time in the presence of
soluble SDF1« (red) was longer than that obtained in the absence of soluble SDF1« (blue). This tendency was
consistent with the numerical simulations where the persistence time in the nonlinear case is larger than that in
the linear case (Fig. 7(c)). Here, the period of the oscillatory forces was set to be 27/w = 10, which is larger than
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Figure 7. (a) Schematic illustration of the trajectory of a cell on a sticky and sloppy substrate. Persistence
time of migration 7 (b) determined from experiments and (c) obtained from the numerical simulations of
36 independent runs. The bars indicate the scatter of the data. Note that 90 sec in (b) corresponds to the
dimensionless time 3 in (c). The meaning of the colors is the same as that in Fig. 6.
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Figure 8. Lateral diffusion constant D of migrating cells determined from (a) the experimental results and
(b) numerical results averaged over 36 independent simulations. Note that 1 xm/min in (a) corresponds to the
dimensionless diffusion constant 0.02 in (b). The meaning of the colors is the same as that in Fig. 6.

the persistence time. Note that this period corresponds to 5min in the experimental unit, which is in accord-

ance with the characteristic period of deformations observed experimentally'!. A small discrepancy between the

experiments and theory is that the theoretical value for the nonlinear sloppy case is fairly large (though within

numerical uncertainty) compared to the experimental one for (d) =34 nm in the presence of SDF1c (red).
Figure 8 represents the lateral diffusion constant D of migrating cells defined through the relation

((7'(t) — 7(0))?) = 4Dt. (19)
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Figure 8(a) shows the experimentally determined diffusion constants in the absence (blue) and presence (red)
of soluble SDF1c. On the sticky surface ((d) =6 nm), the diffusion constant was found to be very small irrespec-
tive of the presence or absence of soluble SDF1«x due to the strong pinning. A prominent difference in diffusion
constants was found on the intermediate surface ({(d) = 18 nm), which becomes less pronounced on the surface
with (d) =34 nm. Figure 8(b) shows the diffusion constant evaluated from numerical data. As in the persistence
time in Fig. 7, the diffusion constant for the sloppy case is slightly larger than the corresponding experimental
value for (d) =34 nm in Fig. 8(a) (red). However, the behavior for the sticky and intermediate substrates is con-
sistent with the experimental observation.

It should be noted that the experimental values of the persistence time in Fig. 7 and the diffusion constant in
Fig. 8 as well as the migrating velocity in Fig. 6 are comparable with the theoretical ones quantitatively since 30s
and 1 pm?/min correspond to 1 and 0.02 in the theoretical unit, respectively confirming the excellent agreement
between experimental data and simulation results both in space and in time.

Last but not least, we remark that other possibilities of the increased persistence of migrating trajectories
are unlikely in the present model. Since one of the major roles of chemokines is to serve as a chemoattractant
to induce cell migrations, it is physically plausible to consider that SDF1c increases the noise level in eqs (6-9).
However, this increase of noise intensity makes the trajectories not extended but more compact. To account for
the extension of migration trajectories in the presence of SDF1a, there are two possibilities. One is to increase the
strength of the active force, while the other is to increase the nonlinear coupling term. However the former can be
ruled out because it is contradictory to the experimental results (5), implying that the deformation power in the
presence of SDF1c is lower than that in the absence.

We have found that SDF1« increases the strength of the nonlinear coupling between deformation and migra-
tion to reproduce the experimental observations of human HSC. As it is expected that other chemical and bio-
chemical cues would result in different dynamic cell behaviors, such a combination of experiments and theory
opens a large potential to discriminate different effects caused by clinically used agents like pathway inhibitors.
In fact, a number of studies suggested that pathway inhibitors do not only block the target molecular interaction
but also interfere with other cellular functions. Thus, further systematic investigations using different extrinsic
factors will enable us to confirm the conclusion mentioned above and to unravel the correlation between specific
pathway activities and deformation-migration patterns (dynamic phenotypes) of primary cells, which cannot
be obtained from the commonly used analysis of static cellular phenotypes. In our recent account®, we demon-
strated that the dynamic phenotyping of deformation and migration following the same strategy can discriminate
the impact of clinical HSC mobilization agents on the adhesion and migration of human HSC.

Conclusions

In this study, we have proposed a new physical model representing the periodic deformation and migration of
cells crawling in the microenvironment. Our minimal model is ideally suited for the quantitative comparison to
the experiments with primary cells influenced by chemokine, which is in contrast to previously proposed models
involving biochemical processes that is not accessible without molecular reporters.

As the experimental system, we chose the active deformation and migration of human hematopoietic stem
cells (HSC) from umbrical cord blood on the bone marrow model surfaces, on which the frictional coupling
between cells and surfaces can be controlled quantitatively. This enables one to quantitatively analyze the active
deformation and migration of human HSC on substrates with various stickiness. Here, we shed light on the influ-
ence of soluble chemokine SDF1« that dictates the migration of human HSC in the bone marrow.

The unique advantage of this study is the direct, quantitative comparison between the experimental find-
ings and the simulation results. We demonstrated that the linear model can explain how the adhesiveness of the
substrate modulates the migration trajectories of HSC obtained from the experiments in the absence of SDF1a
(Fig. 3). On the other hand, the nonlinear model can only recapitulate the increase in the persistence of migration
trajectories observed in the presence of soluble SDF1a. Thus, our minimal model implies that the presence of
SDF1c enhances the nonlinear interactions between the shape deformation and the migration velocity.

There have been several studies modeling the migration behaviors of cells under starved and vegetative con-
ditions by the stochastic model equation for the center of mass or polarity vector?”?. In contrast to these studies,
our model deals with not only the migration behavior but also the degree of deformations. The sum of powers for
m =2 and m =3 deformation, reflecting the significance of energy consumed by HSC, obtained from the mode
analysis of experimental power spectra T}, + I} are comparable to (s7) + (s7)in simulations. The systematic com-
parison of other observables, such as migration velocity, persistence time of migration, and diffusion constants
further confirms the quantitative agreement between experimental data and simulation results both in space and
time. The combination of quantitative experiments under in vitro stem cell microenvironments and numerical
simulations proposed here has a large potential to quantitatively identify how clinical agents and environmental
parameters influence the dynamic phenotype of human primary cells.

To conclude, we have shown that the simple physical model enables us to discriminate, with a suitable choice
of the parameters, different modes of motility for complex human primary cells obtained by the accurate in vitro
experiments.

Methods

Preparation of membrane-based surrogate substrates. 1-stearoyl-2-oleoyl-sn-glycero-3-phospho-
choline (SOPC) and 1,2-dioleoyl- sn-glycero-phospho-ethanolamine-3-N-(cap biotinyl) (biotin-cap-DOPE)
were purchased from Avanti Polar Lipids (Alabaster, USA), and neutravidin cross-linker from Life Technologies.
SDFla with and without biotin tags were purchased from R&D Systems Inc. (Wiesbaden, Germany). Iscove’s
Modified Dulbecco’s Media from Life Technologies (Darmstadt, Germany) was used for all cell experiments.
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Glass slides were sonicated in acetone, ethanol, methanol and water for 3 min, then immersed in 1:1:5 (v/v/v)
H,0, (30%)/NH,OH (25%)/H,0 and sonicated at room temperature for 3 min. The samples were kept in the
same solution for another 30 min at 60 °C and rinsed with ultrapure water. Bottomless y-Slide VI (Ibidi,
Martinsried, Germany) were bonded onto cover slips (Gerhard Menzel GmbH, Braunschweig, Germany) using
SYLGARD184 (Dow Corning Co., USA). The mixture of SOPC and biotin-DOPE were dried and suspended in
buffer (150 mM NaCl, 10 mM Hepes, pH 7.5), followed by sonication for 30 min. The suspension of small unila-
mellar vesicles (SUVs) was injected into the chamber, incubated for 60 min at 40 °C, and the unbound vesicles
were removed by rinsing with HBS buffer. The average lateral distance between lipid anchors (d) and thus pro-
teins can be estimated from the molar fraction c of lipid anchors by inserting the value of the lipid area of
A,,-P,-d ~6542, (d) = /Alipi q/c. To functionalize supported membranes, the samples were incubated with neutravi-
din solution (40 ug/mL) for 2 h, and unbound neutravidin were removed by rinsing. Then, biotinylated SDF1a
solution (10 pg/mL) was added. After removing the unbound SDF1q, the samples were equilibrated at 37 °C.

Isolation of human HSC.  All primary cells were from voluntary donors after obtaining informed consents
following the guidelines approved by the Ethics Committee on the Use of Human Subjects, Heidelberg University.
Human HSC, defined as CD34" cells in this study, were obtained from the umbilical cord blood''. Mononuclear
cells (MNCs) were isolated by density-gradient centrifugation (Merck KGaA, Darmstadt, Germany), and CD34"
cells enriched by magnetic beads were further sorted (2x) by using an AutoMACS affinity column (all Miltenyi
Biotec GmbH, Bergisch-Gladbach, Germany). Non-viable cells were removed by propidium iodide staining. The
final flow cytometry analysis confirmed the purity of CD347 cells is higher than 95%. Each data point presented
was collected from 30-50 cells from 3 donors, and the representable trajectories were shown in each polar plots.

Live-cell tracking. A Keyence BZ-9000 (Keyence, Osaka, Japan) equipped under controlled humidity and
temperature was used for live imaging of HSC migration. For each experimental condition, we collected phase
contrast images from 1-2 positions, using a Plan Fluor air objective (40 x/0.6) over 6 h (frame rate: 25 mHz). All
the data were analyzed using self-written routines in Matlab 7.7.0 (R2008b) and Image].

Details of Model Equations. The shape of a deformed cell is characterized by the deformation tensors
which are given in terms of the Fourier coefficients by?

Si=¢+c .y (20)
Siy =Sy =ilc; — ¢y, (21)
Sy =S (22)
Uin=-—Uyp=-Upn=-Uy=W, (23)
U =—Up=="Uy=-U=-W,, (24)
where
W,=c+csy (25)
W_ =i(c; — c_3). (26)

The symmetric traceless tensor S; represents an elliptical deformation and the third rank tensor Uy expresses
the front-rear asymmetry. Since the higher modes of deformation seem to be less relevant in HSC (See Fig. 2(c)
and ref.!"), we consider, as a minimal nontrivial model, only the modes of m =2 and 3.

By symmetry c0n31derat10n, we obtain the following set of equations for S;; and Uy as well as the migration
velocity v; of the center of mass?®

= 28U (27)
45, = —R,S;; + by| vy, — 6—1} vie| + F(z)(t)
dt 29%j of "iVj ) kVk (28)
Bk _ o+ dfuy ""(5v + 64+ 6y + EQE)
dt 3Yijk o vi"j"k — k ik ki'j ijk \*/> (29)

where the repeated indices imply summation. The forces F(Z)(t) and F{*)(t) contain both deterministic part and
stochastic part. The coefficient || in eq. (27) is the moblhty of a cell. The relaxation rates K, and k; are positive
and the interaction strengths between deformations and migration velocity are denoted by b, and d, in eqs (28
and 29), respectively.
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We have retained in eqs (27-29) simplest nontrivial nonlinear couplings among the migration velocity and
the deformation tensors. Equation (27) indicates that the cell can migrate only when both elliptical deformation
and the front-rear asymmetry exist. In other words, we may identify S;Uj; as the polarization vector Py of the
deformed cell. As mentioned above, the effects of interaction between the migration velocity and the deforma-
tions are taken into account in eqs (28) and (29). These terms are necessary to distinguish deformations either
parallel or perpendicular to the migration velocity depending on the sign of the coefficients b, and dy*.
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