Table 5 Performances comparison between 3 models of each quality indices.

From: Prediction of Congou Black Tea Fermentation Quality Indices from Color Features Using Non-Linear Regression Methods

Parameters

Methods

PCs/c

N/g

Calibration set

Prediction set

Rc

RMSEC

Bias

Rp

RMSEP

Bias

SEP

CV

RPD

TFs

PLS

6

0.811

0.068

−0.001

0.795

0.075

−0.013

0.013

0.187

1.206

SVM

0.04a

0.32b

0.881

0.055

0.001

0.886

0.056

−0.004

0.012

0.220

1.526

RF

5

700

0.970

0.033

−0.001

0.891

0.058

−0.007

0.011

0.190

1.612

TRs

PLS

7

0.733

0.368

−0.006

0.752

0.388

−0.041

0.053

0.079

0.936

SVM

5.38a

0.066b

0.853

0.282

−0.008

0.838

0.326

−0.015

0.046

0.085

1.212

RF

7

100

0.969

0.163

0.000

0.890

0.297

−0.027

0.044

0.081

1.267

TBs

PLS

5

0.936

0.347

0.001

0.921

0.398

−0.010

0.101

0.137

2.346

SVM

5.91a

0.065b

0.964

0.268

−0.049

0.940

0.294

−0.049

0.101

0.136

2.511

RF

2

200

0.986

0.168

0.003

0.944

0.347

−0.068

0.101

0.136

2.636

Sensory score

PLS

5

0.929

1.887

−0.006

0.936

1.843

−0.179

0.535

0.059

2.564

SVM

26.37a

3.39b

0.959

1.428

−0.094

0.941

1.670

0.347

0.600

0.065

2.897

RF

2

700

0.987

0.867

0.032

0.948

1.733

0.482

0.571

0.062

2.931

  1. aRepresents penalty parameters (c) of SVM model; bis the kernel function parameters c of SVM model.
  2. SD, standard deviation; PCs, used latent variables; RMSEC, root mean square error of calibration; RMSEP: root mean square error of prediction; SEP, standard error of prediction; RPD, residual predictive deviation value of prediction.