Table 3 Comparison of various diagnostic accuracy metrics (with 95% CI) for the prognostic models under consideration.

From: Prognostication and Risk Factors for Cystic Fibrosis via Automated Machine Learning

Prognostic model

AUC-ROC

Youden’s J statistic

AUC-PR

Average Precision

F1 score

AutoPrognosis

0.89 ± 0.01

0.67 ± 0.02

0.58 ± 0.04

0.59 ± 0.04

0.60 ± 0.03

Nkam et al.36

0.86 ± 0.01

0.58 ± 0.03

0.50 ± 0.03

0.48 ± 0.03

0.52 ± 0.02

Buzzetti et al.23

0.83 ± 0.01

0.54 ± 0.03

0.42 ± 0.02

0.44 ± 0.03

0.49 ± 0.02

CF-ABLE-UK40

0.77 ± 0.01

0.48 ± 0.05

0.28 ± 0.04

0.20 ± 0.02

0.34 ± 0.02

FEV1% predicted criterion15

0.70 ± 0.01

0.41 ± 0.02

0.50 ± 0.02

0.27 ± 0.02

0.47 ± 0.01

SVM

0.84 ± 0.03

0.60 ± 0.05

0.50 ± 0.09

0.51 ± 0.09

0.52 ± 0.07

Gradient Boosting

0.87 ± 0.02

0.63 ± 0.01

0.55 ± 0.03

0.55 ± 0.04

0.56 ± 0.01

Bagging

0.83 ± 0.03

0.58 ± 0.05

0.51 ± 0.04

0.47 ± 0.04

0.52 ± 0.03

Pipeline 1 (grid search)

0.83 ± 0.02

0.56 ± 0.03

0.51 ± 0.04

0.47 ± 0.04

0.51 ± 0.03

Pipeline 1 (random search)

0.84 ± 0.01

0.56 ± 0.02

0.53 ± 0.02

0.49 ± 0.032

0.53 ± 0.02

Pipeline 2 (grid search)

0.87 ± 0.03

0.62 ± 0.02

0.54 ± 0.05

0.55 ± 0.03

0.57 ± 0.01

Pipeline 2 (random search)

0.83 ± 0.02

0.56 ± 0.03

0.51 ± 0.04

0.47 ± 0.04

0.51 ± 0.03

TPOT

0.84 ± 0.01

0.56 ± 0.03

0.51 ± 0.02

0.49 ± 0.02

0.51 ± 0.02