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One-out-of-two Quantum Oblivious 
Transfer based on Nonorthogonal 
States
Yao-Hsin Chou, Guo-Jyun Zeng & Shu-Yu Kuo

This research proposes the first one-out-of-two quantum oblivious transfer (QOT) scheme that does not 
have a two-level structure and is not subject to Lo’s no-go theorem. Instead, the proposed scheme is 
a simple and efficient approach based on nonorthogonal states. The nonorthogonality causes one of a 
pair of messages to be unable to be measured to achieve the irreversible goal of discarding a message, 
resulting in a one-out-of-two selection effect. The proposed QOT protocol is therefore built directly on 
quantum resources rather than on a two-level structure in which two classical keys must first be created 
using quantum resources (all-or-nothing QOT) and then a one-out-of-two protocol is built from there. 
Furthermore, the proposed protocol allows Alice and Bob to test each other’s loyalty by comparing 
measurement results. In addition, the relationship with the no-go theorem is discussed in detail; this 
relationship is often overlooked in other studies. A security analysis demonstrates that the proposed 
protocol is secure against both external and internal attacks. In addition, an efficiency analysis shows 
that the proposed protocol is more efficient than other, two-level-structured protocols.

Oblivious transfer (OT) is an important branch of cryptography with many useful and important applications, 
such as secure computation, bit commitment, remote coin-flipping, and digital contract signing, for which OT 
protocols are the cryptographic primitives. The two most commonly used OT protocols are the all-or-nothing 
protocol and the one-out-of-two protocol. All-or-nothing OT was first introduced by Rabin1 in 1981. In the 
all-or-nothing OT protocol, a sender Alice wants to send a secret message, m ∈ {0, 1}, to a receiver Bob who has 
only a 50% probability of receiving m. He will either learn the message m with 100% reliability or learn nothing 
about m. At the end of all-or-nothing OT, Alice remains oblivious as to whether Bob received the message m. 
Following the proposal of this protocol, Even et al.2 presented one-out-of-two OT (or it can be abbreviated as 1–2 
OT), in which Alice transfers two messages, m0 and m1, to Bob, and he can choose only one of them and will have 
no idea what the other message is. When the one-out-of-two OT protocol is complete, Alice learns nothing about 
which message Bob selected. In 1988, Crépeau3 presented a method for building a one-out-of-two OT protocol 
by using p-all-or-nothing OT, in which the receiver has a probability p of receiving the message m, called 
Crépeau’s reduction. The receiver builds two key sets to represent his choice, key0 and key1, one of which he learns 
with 100% certainty and the other of which he learns with 0% certainty. Based on Bob’s choice j ∈ {0, 1}, he asks 
Alice to encrypt her messages m0 and m1 using keyj and key j , where = ⇒j key0 0 or = ⇒j key1 1. Then, Bob can 
receive mj under this two-level-structured method.

Classical OT protocols are almost all based on the RSA cryptosystem4. However, Shor showed that a quantum 
algorithm5 can be used to break the RSA cryptosystem in polynomial time, which means that such protocols 
may be unsafe against quantum algorithms. In 1984, Bennett and Brassard proposed the first quantum key dis-
tribution protocol6, called BB84, thereby initiating the study of quantum cryptography. Researchers later showed 
that BB84 is unconditionally secure7–10 both in theory and in implementation by achieving a one-time pad. The 
security of quantum cryptography is based on physical laws, unlike that of classical cryptography, which is based 
on mathematical complexity. This physical basis allows quantum cryptography to easily achieve many goals that 
were difficult or unthinkable in the past, including unconditional security.

Since the proposal of BB846, researchers have been designing quantum oblivious transfer (QOT) protocols 
using quantum properties. Crépeau and Kilian11 proposed the first all-or-nothing QOT scheme in 1988, and 
Bennett et al.12 proposed the first one-out-of-two QOT scheme protected by a quantum error-correcting code in 
1992. In 1994, Crépeau13 presented a one-out-of-two QOT scheme based on quantum bit commitment (QBC), 
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which guarantees security under the assumption that Bob cannot delay the quantum measurement. In 1995, Yao14 
further proved that this protocol is secure against coherent measurement if QBC is secure. However, in 1997, Lo15 
doubted that all one-sided two-party computations (in which two parties must input i and j to calculate a function 
f(i, j) but only one of the two parties is allowed to learn the result) may be insecure, including one-out-of-two 
QOT (the function f in one-out-of-two QOT is a selector). This was called Lo’s no-go theorem, and because of 
the computational equivalent3,12 to two OTs, this theorem has caused extreme difficulties in the development of 
QOT research.

Recent studies have, however, proposed various methods of avoiding Lo’s no-go theorem. In 2002, Shimizu 
and Imoto16 presented an interesting communication method analogous to one-out-of-two QOT with a 50% 
probability of completing the communication. They17 then improved the security of their protocol against entan-
gled pair attacks in 2003. Moreover, in 2006, He and Wang18 proposed a secure all-or-nothing QOT scheme 
using four entangled states, which, as a result, was no longer subject to Lo’s no-go theorem15. Consequently, He 
claimed that Lo’s no-go theorem15 did not truly cover all QOT conditions. Thereafter, He19 demonstrated that a 
one-out-of-two QOT scheme built on all-or-nothing QOT protocol using Crépeau’s reduction3 also is not subject 
to Lo’s no-go theorem15. The key is that the receiver inputs his choice before the sender inputs her messages m0 
and m1, causing the functions f of the one-out-of-two protocol and Lo’s no-go theorem15 to be different.

Following He’s proof19, researchers have been designing new one-out-of-two QOT schemes19. In 2007, Wei 
Yang et al.20 presented a one-out-of-two QOT scheme using tripartite entangled states based on He’s proof19 and 
also showed that this scheme is not covered by the cheating strategy of Lo’s no-go theorem15. Li Yang21 presented 
an all-or-nothing QOT scheme using nonorthogonal states, similar to B9222, and used it as a basis for construct-
ing a one-out-of-two QOT scheme in 2013. Subsequently, Yu-Guang Yang and his research team, as part of a 
research effort that began in 2014, have proposed several QOT protocols. They have been testing various schemes 
for building one-out-of-two QOT protocols using He’s proof19. In 2014, they23 proposed all-or-nothing and 
one-out-of-two QOT protocols based on an untrusted third party. In 2015, they24 developed an all-or-nothing 
QOT protocol by analyzing the probability of the qubit state distribution, which led them to propose a method 
of testing the loyalty of the sender and then to build a one-out-of-two QOT protocol on this basis. They25 also 
designed a one-out-of-two QOT scheme with a two-level structure using BB846 and reduced it to B9222 for an 
all-or-nothing QOT scheme. In addition, they26 attempted to use Bell states to achieve the same effect as B9222 
for one-out-of-two QOT. Furthermore, in 2017, they27 proposed a method of using any two nonorthogonal states 
by cooperatively measuring the qubit sequence and then built a one-out-of-n QOT scheme using this method.

However, these protocols21,23–27 all have two-level structures, in which two classical keys are created using an 
all-or-nothing QOT protocol and then a one-out-of-two QOT protocol is built on top. The two-level structure is 
clearly inefficient, because many quantum resources are consumed for all-or-nothing QOT instead of being used 
to transfer the message. In addition, this structure reduces the elasticity and diversity of protocol design because 
such designs can only follow He’s proof19 with minor revisions to the details of the all-or-nothing QOT scheme. 
In our opinion, He’s proof19 not only revealed a different function f, which is not subject to Lo’s no-go theorem15, 
based on a two-level structure but also provided a new approach in the sense that if any protocol can achieve the 
same effect as that of f in He’s proof19, then it is also covered by He’s proof19. In this work, the first one-out-of-two 
QOT protocol is proposed that is directly based only on the properties of quantum resources, namely, nonorthog-
onal states, rather than a two-level structure, while also being covered by He’s proof19. The key to our protocol is 
that Bob’s choice is made before Alice inputs her messages m0 and m1. The property of nonorthogonality ensures 
that one of the two messages cannot be measured and thus maintains obliviousness, thereby achieving the same 
effect as that of f in He’s proof19. Therefore, our protocol is not only secure (and not subject to Lo’s no-go theorem) 
but can achieve greater efficiency than protocols21,23–27 that are based on a two-level structure.

Results
This section consists of six subsections, including the preliminaries, the basic idea of our protocol, the proposed 
protocol itself, its relationship with Lo’s no-go theorem15 and He’s proof19, and its security and efficiency analyses. 
The preliminaries introduce the properties of quantum machines and define some notation. Then, the basic idea 
of the proposed protocol is introduced before the details of the protocol itself, which are described in the subse-
quent section. Moreover, the relationship among Lo’s no-go theorem15, He’s proof19 and the proposed protocol is 
discussed in the subsection titled “Resisting Lo’s cheating strategy15”. Finally, security and efficiency analyses are 
presented in the last two subsections.

Preliminaries.  This subsection introduces the basic definitions of concepts relevant to quantum machines, 
such as quantum bits, superposition, entanglement, gates, and operations, as well as some properties of quantum 
machines.

Quantum bit.  The classical information carrier is called a “bit”. The quantum information carrier is called a 
“quantum bit”, or a “qubit”. A qubit collapses to certain states of a basis when it is measured. Two bases are com-
monly used: the Z-basis and the X-basis. The Z-basis is defined as = ( )0 1

0
 and = ( )1 0

1
, and the X-basis is 
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1 ( 0 1 )1
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Superposition.  Superposition refers to the phenomenon that a qubit can simultaneously exist in both the |0〉 and 
|1〉 states; i.e., φ α β= +0 1 , meaning that |φ〉 will collapse to |0〉 and |1〉 with probabilities of α 2 and β 2, 
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respectively. In addition, the state |−〉 is also considered to be a superposition in the Z-basis. It has a probability 
of =1

2

2 1
2

 of collapsing to |0〉 and a probability of − =1
2

2 1
2

 of collapsing to |1〉.

Entanglement.  Another important property, entanglement is the phenomenon that qubits cannot exist singly. 
There are four common entangled states, called Bell states, as shown in Eq. 1. For example, when a state |Φ+〉 is 
measured, as in Eq. 1, the result may be either |00〉12 or |11〉12, where the subscript indicates the qubit order. As a 
result, in this case, it is possible to immediately learn the states of two qubits when only one is measured. Einstein 
referred to this as “spooky action at a distance”.
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Quantum gates and operations.  Moreover, unitary operations (UU* = U*U = I) are regarded as gates in quantum 
computers. There are four common operations, represented by operators called Pauli matrices, which are denoted 
by {I, X, Y, Z}, as shown in Eq. 2. Operations I and Z cannot be distinguished in the Z-basis, and Y and Z cannot 
be distinguished in the X-basis. A single qubit cannot be observed using all four operations, which means that 
some information is ignored; this is a key element of the proposed protocol. For example, after a Y gate, the state 
|0〉 becomes −|1〉; i.e., a result of |1〉 will be obtained when the qubit is measured. This negative amplitude is called 
a global phase and cannot be measured. Another important gate is the Hadamard gate, as described in Eq. 2, also 
called the H gate. The H gate can be used to convert between two different bases (the Z-basis and the X-basis). For 
example, after an H gate, the state |0〉 (|+〉) H becomes |+〉 (|0〉). Table 1 shows the states {|0〉, |1〉, |+〉, |−〉} after 
the Pauli operations {I, X, Y, Z}.
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The basic idea.  This subsection introduces the basic idea underlying encoding and decoding in the proposed 
protocol. In this study, the four operations “I”, “X”, “Y” and “Z” represent four messages “00”, “10”, “11” and “01”, 
respectively, for encoding. Each message can be mapped to m0 and m1, which represent Alice’s two messages. 
Because the properties of the two different bases (shown in Table 2) cause a negative amplitude to be unable to be 
measured (see the last final state in the left-hand part of Table 2), one of the two messages cannot be measured, 
and which one depends on the basis in which they are prepared (the receiver’s choice). For example, suppose 
that Bob prepares the state |0〉 and performs either I or H in accordance with his choice, j0 or j1, in order to learn 
the content of either m0 or m1, respectively. In this way, Bob inputs his choice first, and the initial state |0〉 will be 
either |0〉 or |+〉, depending on his choice. The results are shown in Table 2; after Alice’s operation, if Bob’s choice 
is j0 (his initial state is |0〉), he learns m0 unambiguously (the bold text in the left-hand part of Table 2); otherwise, 
he learns m1 (the bold text in the right-hand part of Table 2) unambiguously. As a result, one of the two messages 
is automatically discarded, thereby achieving the requirements of one-out-of-two QOT.

The proposed protocol.  As seen from the basic idea presented above, the operations I and H can be 
regarded as representing Bob’s intentions regarding his choice; this makes the proposed protocol similar to B9222, 
which has been proven unconditionally secure both in theory and in implementation28,29, meaning that no one 

States

|0〉 |1〉 |+〉 |−〉Operations

I |0〉 |1〉 |+〉 |−〉

X |1〉 |0〉 |+〉 −|−〉

Y −|1〉 |0〉 |−〉 −|+〉

Z |0〉 −|1〉 |−〉 |+〉

Table 1.  All results after {I, X, Y, Z}

(m0, m1)
Alice’s 
Operation

Bob’s Initial 
State (j0)

Final 
State (m0, m1)

Alice’s 
Operation

Bob’s Initial 
State (j1)

Final 
State

(0, 0) I

|0〉

|0〉 (0, 0) I

|+〉

|+〉

(0, 1) Z |0〉 (1, 0) X |+〉

(1, 0) X |1〉 (1, 1) Y |−〉

(1, 1) Y −|1〉 (0, 1) Z |−〉

Table 2.  The relationship between the qubit states and the encoding.
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can perfectly identify all states of the qubits without any information from their creator. Another key property 
is that some operations cannot be distinguished in some bases, which means that it is not possible to identify all 
operations from a single qubit. The proposed protocol allows Alice and Bob to test each other’s loyalty, because 
they can check whether the initial and final states are correct. In other words, if they want to lie to each other, it 
will create errors, which can be discovered when they test each other. Let us give a simple example at the end of 
every step of the protocol without channel checking. The proposed protocol consists of 7 steps as follows:

�Step 1. Bob creates a qubit sequence in accordance with his choice intentions j0 and j1, which correspond to 
the states |0〉 and |+〉, respectively. The necessary I and H gates can be considered as equivalent to his choice 
intentions in this stage. This sequence must be longer than the OT sequence, which contains all received mes-
sage qubits as well as qubits for channel checking and for testing Bob’s loyalty. In addition, the channel check-
ing and loyalty testing states are different; the former, also called decoy qubits, belong to {|0〉, |1〉, |+〉, |−〉}, 
and the latter belong to {|0〉, |+〉}. If N denotes the minimum length (at which Bob will receive N messages), M 
is the number of channel checking qubits, and K is the number of loyalty testing qubits, then the total length 
of the QOT sequence is N + M + 2K. Bob randomly prepares M qubits from {|0〉, |1〉, |+〉, |−〉} (each qubit is 
independent) and inserts them into his sequence. Subsequently, he also inserts his N and 2K candidate choice 
intentions ({|0〉, |+〉}) into his sequence and then sends the sequence to Alice. Let us give a simple example to 
describe the proposed one-out-of-two QOT protocol without channel checking, suppose that Bob prepares 
two qubits in |0+〉12 (N) to represent his choices and an additional two qubits in |0+〉34 (2K) for loyalty testing. 
He then sends these four qubits to Alice.
�Step 2. Once she receives the sequence from Bob, Alice first checks the channel for an eavesdropper (Eve) and 
then tests Bob’s loyalty. First, she asks Bob to publish the bases and states that he has created. If the error rate 
is higher than a given threshold, then an Eve is present on the channel, and Alice and Bob abort their com-
munication; otherwise, Alice goes on to test Bob’s loyalty. She discards the qubits for channel checking and 
then randomly selects several positions and requests that Bob publish his bases. If different results, i.e., ∉ {|0〉, 
|+〉}, are measured and the error rate is higher than the given error rate, then Bob is considered dishonest, and 
she aborts this communication; otherwise, she proceeds to the next step. Following the above example, once 
Alice receives the ordered sequence |0+0+〉1234, she randomly chooses a qubit for loyalty testing. Suppose that 
Alice’s random choice is qubit 4; then, she asks Bob to publish the basis of qubit 4, measures it, and compares 
the published and measured results. If the error rate is higher than the threshold, then Bob is considered as 
dishonest; after that, qubit 4 is discarded.
�Step 3. Since the loyalty test may disturb the order of Bob’s choice intentions, Bob must ask Alice to reorder 
the qubits. It is for this purpose that 2K additional qubits are initially provided to prevent vacancies in the 
list of choice intentions. In this step, the sequence after reordering represents Bob’s real choices. Following 
the above example, after the loyalty test, Bob asks Alice to reorder the remaining qubits in the order 21, and 
the states become |+0〉21, with qubit 3 discarded. The resulting state |+0〉21 represents Bob’s choices, j1 and j0, 
respectively.
�Step 4. Alice now inputs her secret messages m0 and m1 through the I, X, Y and Z operations, corresponding to 
the combinations “00”, “10”, “11” and “01”, respectively. Following the above example, Alice performs Z and X 
in accordance with her messages “0112” and “1034”, where the subscripts indicate Alice’s classical bit order, on 
qubits 2 and 1, respectively. This converts the state |+0〉21 into |−1〉21.
�Step 5. Alice then randomly inserts decoy qubits from {|0〉, |1〉, |+〉, |−〉} into the sequence for channel check-
ing and sends the sequence to Bob.
�Step 6. When Bob receives the sequence from Alice, he asks Alice to publish the positions and states of the 
decoy qubits. If the error rate is higher than the channel error rate, they abort this communication and return 
to step 1. Otherwise, Bob learns the contents of the classical messages by measuring the qubits with the bases 
he prepared. Following the above example, Bob performs X- and Z-basis measurements to learn the second 
and first classical messages, “1” and “1” (0112 and 1034, where the subscripts indicate Alice’s classical bit order), 
respectively.
�Step 7. At the end of this protocol, where Bob has to test Alice’s loyalty to prevent Alice from cheating, she 
can learn Bob’s choice with the probability 25%, or 29.3% by POVM. Bob chooses some random positions 
and asks Alice to publish her operations. Bob performs the operations according to Alice’s announcement, in 
order to recover those qubits into {|0〉, |+〉}. If the error rate of loyalty testing is higher than the threshold, then 
Alice is considered as dishonest. Following the above example, Bob asks Alice to publish operation (X), which 
performs on qubit 1; then, Bob performs X on qubit 1 to recover the state into |0〉.

Resisting Lo’s cheating strategy.  Lo’s no-go theorem15 provides a cheating strategy for learning all messages 
in a one-sided two-party secure computation, which doubts that one-out-of-two QOT is insecure. The key to Lo’s 
cheating strategy15 is requirement (A-i), namely, that “Bob learns f(i(m0, m1), j) unambiguously” (the i(m0, m1) rep-
resents a pair of messages in a one-out-of-two QOT scenario), which leads to a probability of 100% that the selected 
state will collapse. In addition, the result is obtained after reversible operations. As a result, choices can be made 
repeatedly to learn all messages, as shown in Eq. 3, where Uj0

, Uj1
, G and |φ〉 represent two different selected opera-

tions, any unitary operation for inputting two messages and any quantum state, respectively. Therefore, once Bob 
learns the content of a message, he can recover the state G × |φ〉, which is the state after Alice’s input, by applying the 
selected operation Ujk

 and its inverse operation ⁎Ujk
, where k ∈ {|0〉, |1〉}. In this way, Bob can change his choice and 

learn the contents of all messages by repeating the above process.

φ φ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅⁎ ⁎U U G U U G (3)j j j j0 0 1 1
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Definition B corresponds to the one-out-of-two QOT scenario covered by Lo’s proof15. Obviously, definition 
B is a special case of definition A. Definition B describes the case in which Alice inputs her messages first and 
then Bob inputs his choices. The important point here is that if Bob inputs his choices first and Alice subsequently 
input her messages, as in definition C (the proposed protocol), this scenario is not equivalent to the function 
considered in Lo’s proof15. This is because the function becomes f(i(m0, m1, j), j) when Bob inputs his choices first, 
and f(i(m0, m1, j0), j1) is meaningless with respect to f(i(m0, m1, j), j). Therefore, Bob cannot change i from i(m0, 
m1, j0) to i(m0, m1, j1) without Alice’s help. Following from the above relation, in the proposed protocol (definition 
C), the result after Bob’s and Alice’s actions can be expressed as

⋅ ⋅ ⋅ | ≠ ⋅ ⋅ ⋅ |∗ ∗⟩ ⟩U G U U G U0 0 (4)j j j j0 0 1 1

Here, =U Ij0
, =U Hj1

, and G ∈ {I, X, Y, Z}. Eq. 4 shows that Bob cannot invert the qubit state without possessing 
information about G. Therefore, Bob cannot perform Lo’s cheating strategy15. As a result, Bob cannot reverse the 
effects of his inputs without Alice’s help. The condition of Equation 4 shows that the proposed function f(i(m0, m1, 
j), j) is similar to that of He’s proof19,30. This proof shows that the order of input of the choices and messages may 
change the function f, which means that this protocol is not subject to Lo’s no-go theorem. In addition, He30 has 
extended the concept of his proof19 to the general case; if Alice and Bob interact with each other and Bob cannot 
eliminate the effects of his operations independently, then the interaction is covered by He’s proof19 and resists 
Lo’s cheating strategy15.

•	 Definition A: ideal one-sided two-party secure computation

(A-i) Bob learns f(i, j) unambiguously.
(A-ii) Alice learns nothing about j and f(i, j).
(A-iii) Bob learns nothing about i more than what logically follows from the values of j and f(i, j).

•	 Definition B: one-out-of-two OT (Lo’s no-go theorem15)

(B-i) Alice inputs i, which is a pair of messages (m0, m1).
(B-ii) Bob inputs j = 0 or 1.
(B-iii) At the end of the protocol, Bob learns the content of message mj but not of the other message m j ; i.e., 
the protocol is an ideal one-sided two-party secure computation, with f(m0, m1, j = 0) = m0 and f(m0, m1, 
j = 1) = m1.
(B-iv) Alice does not know which mj Bob received.

•	 Definition C: the proposed protocol

(C-i) Bob inputs j = 0 or 1 to change the qubit state to {|0〉, |+〉} (Z- or X-basis) in accordance with his choice 
intention.
(C-ii) Alice inputs her messages m0 and m1 using {I, X, Y, Z}.
(C-iii) Bob learns the content of either m0 or m1 using the basis (Z- or X-basis) he prepared.

Security Analysis
Two security conditions are considered in this study: security against external and internal attacks. External 
attacks involve an eavesdropper, Eve, attempting to steal messages without being detected. Internal attacks involve 
either Alice or Bob attempting to steal the other’s secret information; i.e., Alice wants to learn Bob’s choices, or 
Bob wants to learn the contents of both of Alice’s messages.

External Attack.  Alice and Bob must ensure that the communication channel between them is secure, 
because without channel checking or reduced frequency31, Eve will be able to illicitly eavesdrop on their messages. 
In the proposed protocol, several single qubits ∈ {|0〉, |1〉, |+〉, |−〉} are randomly inserted into the transmitted 
sequence as decoy qubits for channel checking, as described in steps 1 and 5 of the protocol. The positions and 
states of these qubits are then published and measured to check whether an Eve is present. If the measured results 
obtained with the same bases are different and the error rate is higher than the channel error rate, then an Eve is 
present. Two common external attack strategies are the intercept-and-resend attack and the entangling attack. 
They are discussed below.

Intercept-and-resend attack.  Eve intercepts all qubits during transmission when the sender sends the qubit 
sequence to the receiver, measures them to obtain the message contents, and then resends those qubits to the 
receiver. This action should disturb the states of the qubits, including the decoy qubits, because Eve does not know 
which bases have been prepared by Alice and Bob. According to the detection rate of BB846, each qubit has a proba-
bility of 1

4
 of detecting Eve’s presence, and the detection rate increases with an increasing number of decoy qubits M. 

As a result, the security level can be assessed based on the detection rate by legal agents, ξ1, as expressed in Eq. 5.

ξ = −






1 3

4 (5)

M

1
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Entangling attack.  Eve may instead use a different method that does not disturb the qubit states, namely, the 
entangling attack. In this attack, she intercepts the transmitted sequence, prepares an ancillary qubit |E〉, and 
performs a unitary operation Ue on the intercepted qubit to entangle it with her qubit |E〉 during transmission. 
The unitary operation Ue is defined as shown in Eq. 6, where |e00〉, |e01〉, |e10〉, and |e11〉 are four states determined 
by the unitary operation Ue, + =a b 12 2 , and + =c d 12 2 . If Eve wishes to avoid detection, the opera-
tion Ue must satisfy a = d = 1, b = c = 0, and |e00〉 = |e11〉, and as a result, the proposed protocol ensures that no 
information can be obtained in this way.

= +
= +
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Internal Attack.  Internal attacks involve the legal agents Alice and Bob attempting to steal each other’s secret 
information; i.e., Alice wants to learn Bob’s choices, or Bob wants to learn the contents of all messages sent by 
Alice. Therefore, two conditions must be discussed, namely, Alice’s and Bob’s cheating strategies.

Alice’s cheating strategy.  There are two conditions to be discussed. The first condition is that Alice has no ability 
of entanglement. In this condition, Alice only has the ability to perform a single qubit gate such as {I, X, Y, Z, H} 
etc., and she has 25% or 29.3% chance to learn Bob’s choices; however, this kind of attack can be always detected 
in our protocol. The second condition is that Alice has the ability of entanglement. In this condition, Alice has the 
ability to perform two or more qubit gates, which leads to diverse attacks. However, Bob is also required to have 
the ability of entanglement to resist attacks from Alice, and a dishonest Alice will be detected by the discussion 
below.

Alice has no ability of entanglement.  A dishonest Alice can learn 25% of Bob’s choices, as in B9222, because a 
measurement in the incorrect basis can yield incorrect measurement results that nevertheless help Alice to deter-
mine Bob’s initial state. For example, if Bob sends the state 0 to Alice, she has a probability of 1

2
 of using the incor-

rect basis (X-basis), and when she does so, the incorrect state (|−〉) will be obtained with a probability of 1
2

, 
resulting in a total probability of = .0 251

4
 ×( )1

2
1
2

. In fact, there is a 29.3% chance that Alice will learn Bob’s 
choices with POVM {E1, E2, I − E1 − E2} on Bob’s qubit, where

≡
+

≡
+

− − .E E2
1 2

1 1 and 2
1 2 (7)1 2

Then, she can unambiguously distinguish states {|0〉, |+〉} with probability

= + + =
+

≈ . .E E0 0 1
2 (1 2 )

29 3%
(8)1 2

In other word, the remaining 70.7% of Bob’s choices will be unknown, which means that Alice should ran-
domly create several state ∈ {|0〉, |1〉, |+〉, |−〉} to send to Bob. However, she cannot know Bob’s final measure-
ment results, as he does not publish any information about the bases. In other words, for each bit, he will be 
unable to correctly decrypt with a probability of − . × × = .(1 29 3%) 17 675%1

2
1
2

 at the Alice’s loyalty testing 
stage, which will make him aware of Alice’s dishonesty with

ξ = − − .1 (1 0 17675) , (9)
D

2

where ξ2 can be decided by the user through the number of qubit D for loyalty testing. Therefore, Bob can detect 
that Alice is cheating. If Alice does not use POVM, the total detection rate is − . × × = .(1 0 25) 18 75%1

2
1
2

 with 
a single qubit. Indeed, while the detection rate dropped by 18.75% − 17.675% = 1.075% with POVM, it does not 
change the number of particles too much.

For a simple example regarding the detection rate with a remaining qubit, which Alice randomly prepared, 
Alice prepares a qubit in state |0〉 and guesses Bob’s choice. In this case, she can only publish operation {I, Z} to 
escape this testing, and there are two branches: 1. Bob uses Z-basis as his choice; in this case, Alice can always 
escape the testing; 2. Bob uses X-basis as his choice; in this case, Bob has a 50% to get |+〉 or |−〉. When he gets 
|+〉, the operation Z cannot restore the state |+〉 to |+〉. Otherwise, when he gets |−〉, operation I cannot restore 
the state |−〉 to |+〉. Therefore, Bob always has a probability to detect Alice’s dishonesty.
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Alice has the ability of entanglement.  A dishonest Alice can prepare Bell states in |Φ+〉AB to perform a teleporta-
tion attack. In this way, she can pass Alice’s loyalty testing, and then, learn Bob’s choices with 25% or 29.3% chance 
without being detected. For a simple example to explain the teleportation attack, in step 3, the qubit from Bob 
after Bob’s loyalty testing is called |ϕ〉C. In step 4, instead of inputting her secret message into qubit C, Alice creates 
a Bell state in Φ+

AB
, distributes qubit B to Bob to replace qubit C, and holds qubit A. After that, Alice performs a 

Bell measurement (a controlled-not gate and a Hadamard gate, which can transfer four Bell states |Φ+〉, |Φ−〉, 
|Ψ+〉 and |Ψ−〉 into |00〉, |10〉, |01〉 and |11〉, respectively), BM for short, on qubit C and A, and publishes one of 
four operations I, X, Y or Z as her secret message according to BM results |00〉CA, |01〉CA, |11〉CA and |10〉CA, respec-
tively. Bob can then perform one of four operations I, Z, X or Y to recover state |0〉B or |+〉B according to a result 
that Alice published. As shown in Eqs 10 and 11, Bob can always recover the qubit state |0〉B or |+〉B, because the 
BM results |00〉CA, |10〉CA, |01〉CA and |11〉CA can always match operations I, Z, X and Y, respectively.

⊗ + =⇒= ⊗ + ⊗
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( 00 11 ) 1
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CA

However, without loss of generality, Bob should also have the same entanglement ability as Alice. He can pre-
pare an entangled state in + +( 00 1 )A B

1
2 1 1

 and sends qubit A1 to Alice. Under normal conditions, we can 
know that Alice will do honest behavior. After Alice performs an operation in {I, X, Y, Z} on qubit A1, the entan-
gled state will be Eq. 12. We can divide those states into two bases (Eqs 13 and 14), called IY basis and XZ basis, 
respectively, of which the IY/XZ basis can perfectly distinguish the states after IA1

/XA1
 and YA1

/ZA1
. Obviously, 

these two bases are not orthogonal. That is to say, Bob will measure qubits A1 and B1 with one of two bases {IY, 
XZ} according to Alice’s operations to check Alice’s loyalty.
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However, Alice may be dishonest and perform a teleportation attack. Alice creates an entangled state in Φ+
AB

 
and sends qubit B to Bob for the teleportation attack. Alice will perform the BM on qubit A1 and A, which leads 
the entire system to be Eq. 15. As a result, we can determine the probabilities of the four qubit states in Eq. 15 after 
the BM by the IY basis and XZ basis are shown in Eqs 16 and 17, where Eqs 16 and 17 are the probabilities of 
states + +( )00 10 11

B B

1
2

1
2

1
2

1

 and − +( )01 10 11
B B

1
2

1
2

1
2

1

 in the IY basis, and Eqs 18 and 19 

are the probabilities of states + +( )01 10 11
B B

1
2

1
2

1
2

1

 and + −( )00 10 11
B B

1
2

1
2

1
2

1

 in the XZ 

basis, where the bold numbers are the probabilities of dishonest Alice evading detection. After the above discus-
sion of the defense strategy, we can determine the probability of Alice’s average escape detection of each entangled 
qubits pair is Eq. 20, and security level ξ3 is as given in Eq. 21, where F is the number of detected entangled qubit 
pairs. Therefore, Alice and Bob can decide security level ξ3, and whether they will continue the protocol according 
to the detection result. In summary, if the dishonest Alice only has the ability to perform single-qubit operations, 
then follow this protocol Bob can always have a probability to detect dishonesty one. Moreover, if the dishonest 
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Alice can prepare Bell states or perform teleportation attacks, Alice’s cheating becomes more and more difficult 
because she has to have the technology to store the qubits received from Bob. However, such a long-term quan-
tum storage technology is still a technical challenge and an open issue today. Even though when the long-term 
quantum storage technology can be built, the protocol still can intentionally delay the operation time between 
step 4 and step 7 to prevent these attacks.
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Bob’s cheating strategy.  A dishonest Bob can prepare entangled qubits of the form |Φ+〉, as given in Eq. 1. In this 
way, he can learn the contents of all messages from Alice, with the results shown in Eq. 22, where the subscripts 
represent the qubit order; i.e., he can perfectly identify which operation Alice performed on qubit 1. However, 
only two states, |0〉 and |+〉, can be measured in the proposed protocol. Alice randomly selects K positions and 
asks Bob to publish the bases he prepared in step 2. If different measurement results are given, i.e., ∉ {|0〉, |+〉}, 
Bob is dishonest. The detection rate by legal agents, or the security level ξ4, is as given in Eq. 23.

Φ = + = +

= ++ + −−

= Φ

Φ = + = +

= ++ − −−

= Ψ

Φ = + = −

= +− − −+

= Ψ

Φ = + = −

= +− + −+

= Φ

+

+

+

+

+

+

+

−

I I

X X

Y Y

Z Z

1
2

( 00 11 ) 1
2

( 00 11 )

1
2

( )

1
2

( 00 11 ) 1
2

( 01 10 )

1
2

( )

1
2

( 00 11 ) 1
2

( 01 10 )

1
2

( )

1
2

( 00 11 ) 1
2

( 00 11 )

1
2

( )

(22)

1 12 1 12 12

12

12

1 12 1 12 12

12

12

1 12 1 12 12

12

12

1 12 1 12 12

12

12

ξ = −






1 1

2 (23)

K

4

Efficiency Analysis.  This section presents a performance comparison of the proposed protocol with three 
modern two-level-structured one-out-of-two QOT protocols21,24,25 based on Crépeau’s reduction3. The proto-
cols of Wei Yang et al.20 and Yu-Guang Yang et al.23,27 are not considered because that of Wei Yang et al. may not 
work, whereas the first protocol of Yu-Guang Yang et al.23 involves an untrusted third party, and the second27 is 
a one-out-of-n QOT protocol for which the resource consumption for one-out-of-two QOT is similar to that 
of Li Yang’s protocol21. The three protocols considered for comparison21,24,25 have two-level structures in which 
one-out-of-two OT is built on all-or-nothing QOT. However, the probability p of all-or-nothing QOT (where p is 
the probability of the unambiguous key) is not always 50%. Significant quantum resources are required to build 
two classical keys (one unambiguous and the other unknown) using all-or-nothing QOT for one-out-of-two OT. 
In addition, every transmission should include decoy qubits for channel checking. Some protocols may need 
many transmissions, and many decoy qubits, to complete all-or-nothing QOT. For fairness, the security level ξ1 is 
ensured to be at least 99.9999% by using 50 decoy qubits for each transmission. Then, the most important indica-
tors are the conversion efficiency between two OT protocols and the number of transmissions (which indirectly 
affects the number of decoy qubits). The total cost of each protocol, as calculated under the requirement that R 
message bits are received, is given in Table 3. Here, only the quantum cost without loyalty testing is considered; for 
fairness, we do not include the cost for loyalty testing because two of the other one-out-of-two QOT protocols21,24 
do not consider any loyalty testing, which means that the sender and receiver may not truly trust each other, 
whereas the loyalty testing of the third protocol24 requires the consumption of a large number of qubits, making 
the quantum cost difficult to calculate. Detailed descriptions of the protocols considered for comparison21,24,25 are 
given below.

Yang’s protocol.  This protocol21 uses the B9222 protocol as the all-or-nothing QOT protocol on which it is based. 
Therefore, it requires four qubits on average to obtain an unambiguous key and only one transmission. However, 
the cited study focused more on the bit-commitment protocol than on the OT protocol, with no further security 
analysis of the QOT protocol or strategies for detecting eavesdroppers. Therefore, no strategy was provided for 
loyalty testing between Alice and Bob. In addition, the number of decoy qubits is computed as described above 
because the original detection strategy of B9222 is less efficient. Therefore, the same detection strategy with decoy 
qubits is used. As a result, the total quantum cost is 4 × R + 50.
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YYLSZ protocol.  This protocol24 also requires at least four qubits on average to obtain an unambiguous key using 
its all-or-nothing QOT strategy, i.e., =p 1

4
. In the all-or-nothing QOT protocol, Alice first sends a sequence to 

Bob, and Bob then sends it back after his measurement, which requires two transmissions. After this, Alice can 
test Bob’s loyalty by observing the probability of occurrence of states |+〉 and |−〉. Note that this strategy is based 
on the law of large number and will consume a large number of qubits. By contrast, Bob cannot really test Alice’s 
loyalty; he is only able to detect errors in the later application of the one-out-of-two OT protocol. The overall cost 
of the protocol is 4 × R + 2 × 50.

YSW protocol.  This protocol25 reduces BB846 to B9222. It uses the BB846 strategy and the publication of addi-
tional state information to allow Bob to generate unambiguous keys as in B9222. It also requires four qubits for 
the generation of an unambiguous key. In addition, it requires one transmission to complete all-or-nothing QOT. 
However, it does not include a loyalty testing method for the all-or-nothing QOT stage. Errors may be detected at 
the application level. The overall cost of the protocol is 4 × R + 50.

Proposed protocol.  The proposed protocol is based directly on quantum resources and consumes one qubit for 
each received bit. The proposed protocol is more efficient than the others21,24,25, with a probability p of 1

4
. The 

proposed protocol requires two transmissions between Alice and Bob. The overall cost of the proposed protocol 
is R + 2 × 50.

As seen from Table 3, the proposed protocol is the most efficient among all of the compared protocols21,24,25; 
this is also shown in Fig. 1. This result demonstrates that building a one-out-of-two QOT protocol directly is more 
efficient than Crépeau’s reduction3, which requires a two-level structure.

Discussion
In conclusion, there three important contributions of the proposed method. First, to the best of our knowledge, 
the proposed protocol is the first one-out-of-two QOT protocol to be designed directly based on quantum prop-
erties without relying on all-or-nothing QOT, and it has been proven to be secure and not subject to Lo’s no-go 
theorem15. A simple and efficient one-out-of-two QOT protocol with single nonorthogonal qubits, in which one 
of the two messages is discarded automatically, has been successfully developed based on the most basic prop-
erties of quantum machines. Second, the proposed protocol can effectively prevent both external and internal 
attacks, as proven by a detailed security analysis. Regarding internal attacks, an important feature of the proposed 

1–2 QOT Protocols

aQuantum 
Resources for One 
Message Bit

bNumber of 
Transmissions

cDecoy 
Qubits dTotal Cost

Yang’s protocol21 4 1 50 4 × R + 50

YYLSZ protocol24 4 2 2 × 50 4 × R + 2 × 50

YSW protocol25 4 1 50 4 × R + 50

Our protocol 1 2 2 × 50 R + 2 × 50

Table 3.  Performance comparison of three modern 1–2 QOT protocols21,24,25 with the proposed protocol. 
aQuantum Resources for One Message Bit: Number of quantum resources consumed for each received bit, 
without decoy qubits. bNumber of Transmissions: Number of transmissions for one sequence. cDecoy Qubits: 
Number of decoy qubits, considering the number of transmissions. dTotal Cost: The total average quantum 
resource consumption for R received bits.

Figure 1.  Illustration of the comparison results.
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protocol is that loyalty testing is applied to provide security against internal attacks by a dishonest Alice or Bob; 
the dishonest one can always be detected at the loyalty testing stages with safety parameters ξ2, ξ3 and ξ4, respec-
tively. Finally, the proposed protocol has a lower cost and is more efficient than many traditional protocols based 
on a two-level structure. In addition, as this protocol uses only a single qubit, it is easily implemented.

Data Availability
No datasets were generated or analysed during the current study.
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