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Metabolic therapies inhibit tumor
growth in vivo and in silico
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Received: 18 July 2018 . Intherecent years, cancer research succeeded with sensitive detection methods, targeted drug delivery
Accepted: 9 January 2019 . systems, and the identification of a large set of genes differently expressed. However, although most
Published online: 28 February 2019 : therapies are still based on antimitotic agents, which are causing wide secondary effects, thereis an
. increasing interest for metabolic therapies that can minimize side effects. In the early 20" century,
Otto Warburg revealed that cancer cells rely on the cytoplasmic fermentation of glucose to lactic
acid for energy synthesis (called “Warburg effect”). Our investigations aim to reverse this effect in
reprogramming cancer cells’ metabolism. In this work, we present a metabolic therapy specifically
targeting the activity of specific enzymes of central carbon metabolism, combining the METABLOC bi-
therapeutic drugs combination (Alpha Lipoic Acid and Hydroxycitrate) to Metformin and Diclofenac, for
treating tumors implanted in mice. Furthermore, a dynamic metabolic model describing central carbon
metabolism as well as fluxes targeted by the drugs allowed to simulate tumors progression in both
treated and non-treated mice, in addition to draw hypotheses on the effects of the drugs on tumor cells
metabolism. Our model predicts metabolic therapies-induced reversed Warburg effect on tumor cells.

Is cancer a genetic disease or a metabolic alteration? This issue has been subject to debates in the history of can-
cer!?. The genomic hypothesis of cancer originally raised with the discovery of a proto-oncogene tyrosine-protein
kinase (Src) responsible of cancer in chicken. J. Michael Bishop and Harold E. Varmus, two Nobel Prize winners
(1989) discovered in 1979 that mutations in src gene in normal chickens can lead to cancer®. Then, the genomic
area of cancer reached its peak with the complet sequencing of the human genome by the International Human
Genome Sequencing Consortium in 2001*. This has opened new markets for the pharmaceutical industry while
defining new approaches in cancer therapy. For instance synthetic drugs such as Cisplatin and 5-Fluorouracil
where introduced and are now part of the chemotherapeutic regimen. However, the limited success of these
chemotherapeutic agents opened avenues for new strategies. New thoughts wave has emerged with a disrup-
tive synthetic review aiming at redefining “The hallmarks of Cancer” and the common rules that govern the
reprogramming of normal cells into malignant cancers®. Hanahan and Weinberg described common molecular
machinery involved in regulating cell proliferation, differentiation and death. Indeed, dysfunctions on the inter-
nal “machine” or on its environment lead to the same deleterious phenotype: “sustaining proliferative signaling,
evading growth suppressors, resisting cell death, replicative immortality, sustained angiogenesis, and activating
invasion and metastasis” More recently, the same authors proposed an updated version of the previous review
where they added “two emerging hallmarks”, including “reprogramming of energy metabolism and evading
immune destruction®”. These new concepts have been the subject of numerous studies these last years, including
those from our research group®'!.

To the question of whether cancer is a genetic disease or a metabolic alteration, hypothesis enabled explaining
how cancer cells’ metabolic reprogramming confer them an advantage from normal cells'?~!%. Our studies among
others contributed rehabiliting past studies from the german Nobel Prize winner, Otto Warburg, who introduced
the idea of metabolic alteration in cancer cells'®. In his seminal article, Warburg (1956) presented the concepts of
“uncoupling of respiration” and “aerobic glycolysis” occurring in cancer cells, to explain that cancer cells rely on
the cytoplasmic fermentation of glucose to lactic acid for energy (ATP) synthesis rather than the oxidative phos-
phorylation'®. Otto Warburg explained this observation as a phenotypic expression of deleterious mitochondria.
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This characteristic of cancerous cells, labeled as the Warburg effect, has been the subject of extensive investiga-
tions the past years!”. The Warburg effect confers a metabolic advantage to the cancerous tissue compared to
normal somatic cells. This has been described as a consequence of the hybridic aspect of cancer cells metabolism
where anabolism and catabolism occur simultaneously'®. Carbon substrates are catabolized and intermediate
compounds used as primary source for building blocks synthesis (lipids, proteins and nucleic acids), essential
for cell growth!®-20, This hybrid metabolism explains why targeting one pathway with a chemoterapeutic agent is
barely enough to stop tumor growth. Indeed, metabolic and epigenetic reprogramming of cancer cells confer a
metabolic plasticity in their central carbon metabolism (CCM), which could explain their acquired resistance to
current chemotherapies.

To this end, an interesting approach would be to target the CCM using metabolic drugs known to inhibit
specific enzymes. Among enzymes of the CCM, both pyruvate dehydrogenase (PDH) and ATP citrate lyase
(ACL) play key role in metabolic reprogramming of cancer cells'®. PDH enzymatic complex converts pyruvate to
acetyl-CoA and fuels the tricarboxylic acid cycle in normal cells. In cancer cells, PDH has been shown to be inhib-
ited whereas ACL is overexpressed. ATP citrate lyase converts cytoplasmic citrate to oxaloacetate and acetyl-CoA,
a precursor for lipid synthesis. Other key enzymes playing pivotal role on cancer metabolism are lactate dehydro-
genase (LDH) and enzymes involved on the electron transfer chain (ETC) reactions. Indeed, metabolic therapies
targeting these enzymatic reactions involved in carbon resources fermentation could limit their uptake by the
tumor in order to vanish the Warburg phenotype.

We used Alpha Lipoic Acid (ALA) and Hydroxycitrate (HCA), two old drugs from the pharmacopoeia tar-
geting PDH and ACL, respectively. Interestingly, we managed to show that combination of ALA and HCA deeply
inhibits cultures of three cancer cell lines (MBT-2 bladder carcinoma, B16-F10 melanoma and LL/2 lung carci-
noma)?!. These results agree with that from Hatzivassiliou and colleagues who reported the inhibition of cancer
cells growth when using specific silencing RNA (SiRNA) to vanish ACL protein expression®. Similarly, a study
from Bonnet and colleagues (2006) demonstrated the efficacy of a small molecule, Dichloroacetate, in restor-
ing PDH activity in cancer cells®. Taken together, these experimental results show the potential of targeting
enzymes involved in programming the Warburg effect. These therapeutic approaches show a similar efficacy
as for conventional therapies but without any side effects. Furthermore, we have also investigated the efficacy
of our drug combination, namely METABLOC (ALA and HCA), used in synergy with standard chemotherapy
drugs such as Cisplatin or Methotrexane?!. We reported an enhanced delay in tumor growth when Cisplatin and
Methotrexane are applied in combination with METABLOC. A standardized screening method allow identifying
the best drug combinations to asses their effects on cancer cells metabolism and tumor growth?. A pre-clinical
investigation thus consisted to further evaluate the effect of METABLOC combined to new drugs (Metformin
and Diclofenac) on the growth of transplanted LL/2 Lewis lung carcinoma into mice. The choice of these two
drugs is based on their reported positive effect at slowing tumor growth. Metformin is an old drug commonly
used in type II diabeties [Diabetes Prevention Program Research Group]. Emerging studies are showing the
positive effect of using Metformin in cancer therapy?*-?%. Since Metformin is used as an hypoglycemic drug in
type II diabeties, it slows down insulin secretion and cell proliferation by decoupling mitochondrial respiration
throughout the ETC. Interestingly, retrospective epidemiological studies have shown that diabetic patients with
long-term Metformin treatment have a reduced risk of developing cancer?*?. Moreover, another pre-clinical
study showed an anti-proliferative effect of Metformin on tumor xenograft in mice®. Diclofenac is also an old
drug currently used as an anti-inflammatory agent. Recent studies mentioned the potential use of Diclofenac in
cancer treatment®' -3, For instance, Gottfried ef al. (2013) showed that Diclofenac impairs the Warburg effect by
targeting glucose transport into cancer cells and inhibiting lactate dehydrogenase (LDH) and monocarboxylate
Transporter 1 (MCT1). This results in decreased glucose uptake and lactate secretion.

In this work, we injected xenograft of LL/2 Lewis lung carcinoma cells into the peritoneal cavity of mice and
we tested the effect of different combinations of drugs on the tumor volume evolution. Results show a decrease
in LL/2 tumor volume when METABLOC is administrated in combination with Diclofenac and Metformin.
The METABLOC effect is enhanced when Metformin is used at high-dose. Results are compared to the case
of administration of a classic chemotherapeutic agent (Cisplatin), as a positive control. We also set up a kinetic
metabolic model of tumor growth in order to characterize the effect of metabolic therapies on tumor metabolism.
The model was not only able to simulate tumor growth in accordance with experimental data, but also allowed
to simulate inhibition of growth after application of the metabolic therapy. This approach to kinetic modeling of
tumor growth opens avenues to the identification of new metabolic targets.

Results

High-dose Metformin and Diclofenac slightly induce tumor regression.  We first analyzed the effect
of exposing groups of C57BL/6 mice (n=10) bearing the LL/2 Lewis lung tumor xenograft to chronic low and
high-dose of Metformin and Diclofenac. As control, we also designed groups for chronic injection of Phosphate
Buffer Saline (PBS), Cisplatin (chemoterapeutic drug) and METABLOC (calcium hydroxycitrate + lipoic acid).
Results are reported in Fig. 1. Mice group treated with PBS, as negative control, reaches a tumor volume of
4000 mm?, whereas the group treated with Cisplatin (positive control) have half of the tumor volume at day 59
(Fig. 1a,b). We also applied chronic dose of METABLOC, already used in our previous studies. This combination
of calcium citrate (HCA) and lipoic acid (ALA) does reduce tumor growth, as reported in our previous works
(Fig. 1¢). High-dose of Metformin and Diclofenac slightly delay tumor growth from day 10 to day 59 after cell
inoculation (Fig. le,g). Low-dose metformin also delays tumor growth but not low-dose diclofenac (Fig. 1d,f).
Metformin shows a dose-response effect on tumor volume (3500 mm? for low-dose and 3300 mm? for high-
dose). This is not the case of Diclofenac-treated group where the high-dose Diclofenac slightly reduces the tumor
volume (mean value = 3300 mm?) but the low-dose group is similar to PBS at day 59 (Fig. 1). Experiments were
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Figure 1. Xenograft tumor evolution in mice under metabolic therapies. Treatments started at day twelve
after tumor inoculation in mice. The thin curves represent tumor volumes for each single mouse. The red bold
curves are the mean values of all the thin curves. (a) Phosphate-buffered saline (PBS) is used as a control. (b)
The chemotherapeutic agent, Cisplatin, slows down tumor growth. (¢) Tumor growth is slightly reduced under
METABLOC therapy. (d-g) Low-dose and high-dose Metformin and Diclofenac have no significant effects on
tumor evolution.

stopped at day 59 since PBS group reaches a lethal tumor volume. Then another group were fed with METABLOC
and Metformin or Diclofenac.

METABLOC and high-dose Metformin combination slows and inhibits tumor growth. METABLOC
combination with high-dose Metformin and Diclofenac significantly delays LL/2 carcinoma progression in mice com-
pared to PBS or METABLOC treatment (Fig. 2b,c). METABLOC with low-dose Metformin also have a positive effect
whereas its combination with low-dose diclofenac has poor effect (Fig. 2d). Among these curves, only METABLOC and
high-dose Metformin treated group shows a regression in tumor volume (Fig. 2b). The mean tumor volume is signifi-
cantly decreased from day 45 to day 59 in the case of METABLOC + Metformin (high-dose) combination (p < 0.005).
The tumor has a better response to our combination compared to Cisplatin treatment (p < 0.001). High-dose
Metformin clearly enhances our previous METABLOC combination (Hydroxycitrate + Lipoic acid).

High-dose Diclofenac enhances Metformin effect in inhibiting tumor growth.  We went further
in our investigation and treated a group of mice (n=10) with full combination of METABLOC + Metformin
(low and high-dose) + Diclofenac. Addition of high-dose Diclofenac to METABLOC + high-dose Metformin
improves the tumor response to treatment (Fig. 2e). Tumor volume starts regressing at day 45 in METABLOCS
(METABLOC + Metformin (high-dose) + Diclofenac (high-dose)) treated group whereas that regres-
sion is observed at day 52 for METABLOC + Metformin (high-dose) (Fig. 2b). Combination with low-dose
Metformin is less pronounced. METABLOCS significantly decreases tumor growth at day 59 compared to
METABLOC + high-dose Metformin (p < 0.001) (Fig. 2b). Compared to Cisplatin-treatment, METABLOC
has less effect but tumor cell sensitivity increases when the last is combined with metformin and then with
Metformin + Diclofenac. Combinations of these old and low-cost drugs are two-times more efficient than the
classic chemotherapeutic agent. Our new finding is that a combination of METABLOC (Hydroxycitrate + Lipoic
acid) and high-dose Metformin strongly inhibits growth of tumor xenograft inoculated to a group of mice
(n=10).

In silico metabolic therapy simulates tumor growth inhibition. A kinetic metabolic model (see the
metabolic network in Fig. 3 and the system of differential equations in methods) has been set up from previ-
ous models describing the simulation of Chinese Hamster Ovary cells (CHO) growth on different media for
the production of monoclonal antibodies*. Here, our model is first used to simulate the growth of a tumor
xenograft implanted to a group of mice. Then, the model was used to simulate the impact of in silico metabolic
therapy - METABLOC - Metformin - Diclofenac on tumor growth. This model is not only useful for simulating
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Figure 2. Tumor evolution under metabolic therapy combinations. The thin curves represent tumor volumes
for each single mouse. The red bold curves are the mean values of all the thin curves. (a) METABLOC + low-
dose Metformin slows down tumor growth. (b) METABLOC + high-dose Metformin significantly reduces
tumor evolution and inhibits tumor growth at day 50 from cell inoculation. (c,d) METABLOC + low-dose
and high-dose Diclonenac has no significant effect on tumor growth inhibition. (¢) METABLOC + high-dose
Metformin and Diclofenac drastically inhibits tumor growth and reverses the tumor curve.

experimentally obtained tumor growth, but it also allowed us to characterize the metabolic phenotypes the tumor
developing in mice with time.

The model simulates adequately tumor xenograft growth in mice for the most efficient treatment strat-
egy (Fig. 4a). The predicted tumor volume is within the standard deviations of experimental tumor volume.
The model predicts a tumor volume evolution from 154 mm? to 3900 mm?, in line with the experimental data
(154 + 16 to 4076 £ 297 mm?®). It is important to note that model predictions are only based on total tumor cell
volume and blood network of capillaries. Results thus confirming model ability to describe tumor growth. For the
model integrating metabolic therapy, the therapeutic molecules are supplied within the blood inlet flux (F) feed-
ing the capillaries blood volume (i.e. tumor cells microenvironment). These molecules are known to specifically
target specific enzymatic pathways; with the known effects on cell metabolism that are explicitly described in the
model. Model simulations describe the inhibition of tumor growth by metabolic therapy (METABLOC + Metf
ormin + Diclofenac) Fig. 4b. Both experimental and predicted data of tumor evolution show a reduced growth
phase from t0 (10 days after tumor inoculation) and reach a plateau at day 35. Model simulations show a growth
plateau at around 873 mm? as for the experimental data (873 =70 mm?). However, the model does not simulate
the decrease in tumor volume. This is probably due to the occurence of apoptosis in the tumor, a phenomenon
that is not described in the model.

The metabolic model predicts reversed Warburg effect upon metabolic therapy. Ina recent
work™®, we reported concentrations of key metabolites involved in energy management throughout the central
carbon metabolism. Concentrations of adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD),
and nicotinamide adenine dinucleotide phosphate (NADP) have been measured in normal and cancer cells,
extracted from fresh human colon tissues. Our results showed high NAD*-to-NADH and NADP*-to-NADPH
redox ratios in cancer cell populations compared to normal proliferating cells. Interestingly enough, our model
also predicts the high throughput aerobic glycolysis, commonly known as the Warburg effect, observed in cancer
cells (Fig. 5(a,c)). Consumption of glucose by the tumor cells is linear, until reaching limitation level at the end
of the 25th day and totally consumed 59 days after incubation. This accelerated glycolysis results in a massive
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Figure 3. The metabolic network. The core metabolism of cancer cells integrates glycolysis, the pentose
phosphate pathway, the citric acid cycle, lipogenesis and amino acids metabolism. Biomass synthesis is
described as the incorporation of amino acids, intermediate metabolites and palmitic acid. The metabolic
therapy includes Diclofenac as hexokinase and lactate dehydrogenase inhibitor; alpha-Lipoic acid (ALA)

as pyruvate dehydrogenase activator; Hydroxycitrate (HCA) as ATP citrate lyase inhibitor; Metformin as

ATP synthase inhibitor and NAD leakage activator. Notations: ACCOA: Acetyl-CoenzymeA, ACCOA:
Acetyl-CoenzymeA, ACL: ATP-citrate lyase, ADP: Adenosine diphosphate, AK: Adenylate kinase, AKG:
a-ketoglutarate, ALA: Extracellular alanine, AMP: Adenosine monophosphate, ARG: Extracellular arginine,
ASN: Asparaginase, ASP: Extracellular aspartate, ATP: Adenosine triphosphate, CIT: Citrate, CO,: Carbone
dioxide, DICLO: Extracellular diclofenac, EGLC: Extracellular glucose, EGLN: Extracellular glutamine, EGLU:
Extracellular glutamate, F6P: Fructose-6- Phosphate, FADH2: Flavine adenine dinucleotide, FUM: fumarate,
G6P: Glucose-6-phosphate, GAP: Glyceraldehyde 3-phosphate, concentration, GInT: Glutamine synthetase,
GLU: Glutamate, GLY: Extracellular Glycine, H,O: Hydrogen dioxide, HCIT: Extracellular hydroxicitrate,
HIS: Extracellular histidine, HISARGTA: Histidine/arginine transamination, ILE: Extracellular isoleucine, LA:
Extracellular lipoic acid, LAC: Extracellular lactate, LEU: Extracellular leucine, LYS: Extracellular lysine, MAL:
Malate, ME: Malic enzyme, Metformin: Extracellular metformin, NAD: Nicotinamide adenine dinucleotide
(Oxidized), NADH: Nicotinamide adenine dinucleotide (reduced), NADP: nictoniamide adenine dinucleottide
phosphate, NADPH: nictoniamide adenine dinucleotide phosphate (reduced), NH,: Extracellular ammonia,
OXA: Oxaloacetate, PALM: Palmitate, PEP: Phosphoenolpyruvate, Pi: inorganic phosphate, PK: Pyruvate
kinase, PPRibP: Nucleotide synthesis, PYR: Pyruvate, R5P: Ribulose-5-phosphate, SER: Extracellular serine,
SUC: succinate, SUCCOA: Succinyl coenzyme A, THR: Extracellular threonine, TYR: Extracellular tyrosine,
VAL: Extracellular valine.

release and accumulation of lactate in the blood stream. NAD*-to-NADH is the catabolic marker of that aer-
obic glycolysis proposed by Warburg in his seminal article'®. Therefore, an important NAD*-to-NADH ratio
allows the maintenance of the glycolytic potential of cancer cells. Combining METABLOC and high-dose of
Metformin and Diclonenac considerably reduces glucose consumption by tumor cells. This phenomenon thus

SCIENTIFIC REPORTS |

(2019) 9:3153 | https://doi.org/10.1038/s41598-019-39109-1 5


https://doi.org/10.1038/s41598-019-39109-1

www.nature.com/scientificreports/

Tumor volume - control
T T T : T

Tumor volume - Metabolic therapy

4500 T T T T 4500 T T
e Predicted e Predicted
4000 Q Experimental jf 4000 Q Experimental | -
3500 h 3500 h
3000 h 3000 h
« 2500 h - 2500 F h
& 2000 1 & 2000 - 1
1500 h 1500 - h
1000 h 1000 - h
500 1 500 /H—LJ\Q
L L

0 I I I I I I I I I 0 I I I I I I I I I

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
days days
(a) (b)

Figure 4. Predictions of the tumor growth in control and underin silico metabolic therapy. (a) The kinetic
model of tumor metabolism simulates tumor volume in line with the experimental data. (b) Under metabolic
therapies (METABLOC combined with diclofenac and high dose of Metformin), the model predicts tumor
inhibition and its volume regression, as determined experimentally.
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Figure 5. Simulated blood metabolites (glucose and lactate) and simulated redox ratio (NAD*/NADH) in
tumor (a) and tumor treated with metabolic drugs (b). Simulated fluxes of lactate dehydrogenase (VLDH) and
respiration (Vresp) in tumor (c) and tumor treated with metabolic drugs (d). (a) Lactic acid is first eliminated
by the blood flow and then accumulates with tumor growth. NAD*/NADH ratio decreases upon glucose
exhaustion. (b) Under metabolic therapy glucose uptake slows down, as well as lactic acid secretion. NAD*/
NADH ratio decreases with tumor growth. (c) The high value of VLDH and the decrease of the respiration flux
are markers of the Warburg effect in the tumor. (d) The negative flux of VLDH which corresponds to lactate
uptake and the increase of the respiration flux both translate a reverse Warburg effect.
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results in decreased lactate secretion and accumulation (Fig. 5(b,d)). NAD"-to-NADH redox ratio is low and
decreases with metabolic therapies. These observations are both signatures of a reduced glycolytic flux or the
reverse Warburg effect.

Conclusion

Metabolic therapies have been used to study tumor xenograph growth in mice. We experimentally showed that
the combination of METABLOG, high-dose Metformin and Diclofenac inhibits the tumor growth. We proposed
a dynamic metabolic model of the tumor which simulates the effects of the metabolic therapies on tumor evolu-
tion and tumor cell metabolism. This model also predicts tumor regression, a lower glycolytic flux and lactic acid
secretion upon metabolic treatments. Intracellular NAD*/NADH redox ratio is low and decreases, as a conse-
quence of reduced glycolytic flux. Indeed, the oxidative phosphorylation may be rewired from the fermentation
pathway, favoring mitochondrial respiration and inversed Warburg effect. Our model supports our experimental
results and it can also be use to test new combination of metabolic treatments. These results pave the way for new
strategies in metabolic therapy and in silico metabolic drug design.

Methods

Cell culture. The LLC/1 cell-line ATCC® CRL-1642 (LGC Standards, Molsheim-France) cultivated in the
medium DMEM Glutamax I (Invitrogen-Gibco) with 10% of FBS (Eurobio) and 1/10000 IU of Penicillin/
Streptomycin (Sigma Aldrich P4333) were injected into the peritoneal cavity of mice at 5 million cells per mouse
in a 150 shot and within 12 days of incubation, when tumors reached 130 mm?, mice were randomized and the
treatments were started.

Metabolic treatment. Lipoic acid (Sigma Aldrich T1395), calcium hydroxycitrate(IWDO) and cisplatin
(Sigma Aldrich 479306) were dissolved in PBS and injected intraperitoneally (i.p.) two times per day (2X/D)
for lipoic acid and calcium hydroxycitrate, 1X/2D for cisplatin at 10 mg/kg, 250 mg/kg and 1 mg/kg, respec-
tively. Drops of ethanol were added to completely dissolve lipoic acid in PBS solution. Diclofenac sodium
(Sigma-Aldrich 93484) at 3 mg/kg and 30 mg/kg adjusted in 25 gL/mL (LOW) and 250 pL/mL (HIGH)
of drinking water were administered orally (Per Os). A mouse drinks about 3 mL water per day. Metformin
(Sigma-Aldrich 1396309) at 2.5mg/kg, 12.5mg/kg and 25 mg/kg adjusted in 20 x/mL (LOW), 100 L/mL
(MEDIUM) and 200 pL/mL (HIGH) of drinking water were also administered orally.

Animal handling. Mice were divided in a weight-normalized manner into the groups of 10 animals per
group. Forty eight groups of 6-8 weeks old inbred male C57BL/6 mice (mean weight: 21.1541.11 g) were
obtained from Pasteur Institute, Iran. They were housed five to a cage with access to autoclaved mouse chow
and water ad libitum. They were kept in a room under controlled temperature (22 °C), humidity (55%) and light
(lights on 7h00 am-7h00 pm). All animals received human care in compliance with the Guide for the Care and
Use of Laboratory Animals [DHEW Publication No. (NIH) 85-23, from 1985 with all next updates, Office of
Science and Health Reports, DRR/NIH, Bethesda, MD 20205]. The experimental protocols were approved by the
company Nosco Pharmaceuticals.

The metabolic network. The metabolic network presented here and displayed in Fig. 3 has been modi-
fied from previous models of Chinese Hamster Ovary cells (CHO) and mouse myeloid derived suppressor cells
(MD-SCs)***-%_Tt includes 35 enzymatic reactions describing the fate of 52 metabolites. We distinguished two
compartments: external (i.e. blood microenvironment of tumor cells) and intracellular cell metabolites, with the
cell as a unique compartment. The network integrates pathways of the central carbon metabolism (CCM) such as
glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, lipogenesis, the oxidative phosphorylation
and pathways of amino acid metabolism. In this CCM, glucose and amino acids are the main sources of carbon
and nitrogen for cell proliferation and biomass synthesis. For further details see®.

Minimal cut sets of the metabolic networks. The concept of minimal cut set has been introduced
to determine the minimal set of reactions whose deletion completely blocks a target*’. In our metabolic net-
work, there are 1058 minimal cut sets which prevent the tumor growth (X). They have been calculated with
CellNetAnalyzer*-*? and we have selected the shortest. Twenty of them have their size lower than two and only
6 are of size one: VHK, VG6PDH, VCS, VACL, VPALM, Vgrowth. As our therapy is not a genetic modification,
the inhibition of one of them will not totally prevent the tumor growth. This structural analysis shows that the
diclofenac which inhibits the hexokinase (VHK), and the hydroxycitrate which inhibits the ATP citrate lyase
(VACL), should have a negative impact on the tumor growth.

Dynamic modeling of tumor volume. The tumor volume includes cancer cells and the network of cap-
illaries (Fig. 6). The model was established on the basis of mass balances on metabolites and tumor cells con-
centration. The tumor cells are continuously perfused from a network of capillary of total volume V;, which is
considered as a perfectly mixed stirred-tank reactor (CSTR). The blood composition within the tumor volume
was thus considered homogeneous. In a perfusion system the cells are retained within the vessel.

The tumor is continuously fed from the network of capillaries, with a global blood flow rate (F) of composition
C, at tumor inlet. For simplification purposes, the variation of the blood flow with tumor growth was neglected.
Here, C and C; are the vectors of tumor blood concentrations and blood concentrations in metabolites at tumor
inlet, respectively (in mM), and m is the vector of concentrations of tumor cells intracellular metabolites (in mM).
S.and §,, are the stoichiometric matrices of the reactions involving the extracellular and intracellular metabo-
lites, respectively. The r term is the specific rates vector (in mM/h in cells and mmol/10° cells/h in capillaries) of
each reaction in the metabolic network, whilst ¢ and 4,4 are the cells and capillaries specific growth or volume
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increase rates (h '), respectively. X is the total tumor cells volume (in 106 cells/ml) and ¢,, is the fraction of intra-
cellular metabolites that are integrated into the cells matter. The dynamical system is written as follow and is
explained in supplementary materials:

ac =S xrx X (CO_C)XF—ubIdxC
dt Vilood Vblood o0
dm
— =S, xr—(g,+mx
dt (Em ) xn
NAD \"
1 —
ax = pxX—k;x n(NADH) x X
dt k 4 (Nap n
an |+ ()
dVblood
—a Fotood” Volood
AV, mor ax n dVblood
dt dt dt

Parameter estimation. Parameters value where first taken from previous works on CHO cells***, when
not available for cancer or human cells in the literature or databanks. Then, we used nonlinear optimization func-
tion, fmincon (MatWorks®), to optimize sensitive parameters which are F,,, F,,, and the specific growth rate of
tumor cells (1). Parameters value optimization was based on the following objective function:

2
Y;ti — Yn,t(P)
Ot

N T
min Z Z
n=1t=1

« »

where Y7 is the n” experimental data at the " experimental time, Y,, (p) the simulated output with “p” a vector
n,t p P nt P p P

« »

of the three sensitive parameters and “o” the standard deviation of the experimental measurements.
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