Table 4 Performances of the nine models or methods for different applications.
From: Using Machine Learning to Measure Relatedness Between Genes: A Multi-Features Model
Application | Evaluation | MFR | Logit | LDA | PCC | SRC | MI | PPC | CMI | CXP |
---|---|---|---|---|---|---|---|---|---|---|
10-fold cross-validation | AUC | 0.819 | 0.818 | 0.818 | 0.699 | 0.692 | 0.664 | 0.695 | 0.484 | 0.686 |
B0 + B1 | 0.927 | 0.916 | 0.916 | 0.495 | 0.469 | 0.456 | 0.366 | 0.152 | 0.455 | |
Test verification | AUC | 0.823 | 0.822 | 0.822 | 0.696 | 0.690 | 0.658 | 0.691 | 0.484 | 0.682 |
B0 + B1 | 0.873 | 0.856 | 0.856 | 0.440 | 0.518 | 0.428 | 0.270 | 0.172 | 0.477 | |
GeneFriends verification | AUC | 0.816 | 0.821 | 0.821 | 0.815 | 0.764 | 0.733 | 0.823 | 0.484 | 0.782 |
B0 + B1 | 0.962 | 0.957 | 0.957 | 0.571 | 0.471 | 0.483 | 0.613 | 0.091 | 0.485 | |
DIP verification | AUC | 0.727 | 0.724 | 0.724 | 0.604 | 0.617 | 0.586 | 0.602 | 0.487 | 0.600 |
B0 + B1 | 0.727 | 0.713 | 0.713 | 0.544 | 0.507 | 0.519 | 0.438 | 0.142 | 0.463 | |
Constructing a cancer gene network | NPP | 15 | 12 | 14 | 10 | 10 | 11 | 12 | 8 | 10 |
Predicting gene function | L0 + L1 | 33.07 | 32.45 | 32.45 | 4.83 | 8.89 | 6.42 | 7.18 | 0.16 | 1.89 |