Table 4 Performances of the nine models or methods for different applications.

From: Using Machine Learning to Measure Relatedness Between Genes: A Multi-Features Model

Application

Evaluation

MFR

Logit

LDA

PCC

SRC

MI

PPC

CMI

CXP

10-fold cross-validation

AUC

0.819

0.818

0.818

0.699

0.692

0.664

0.695

0.484

0.686

B0 + B1

0.927

0.916

0.916

0.495

0.469

0.456

0.366

0.152

0.455

Test verification

AUC

0.823

0.822

0.822

0.696

0.690

0.658

0.691

0.484

0.682

B0 + B1

0.873

0.856

0.856

0.440

0.518

0.428

0.270

0.172

0.477

GeneFriends verification

AUC

0.816

0.821

0.821

0.815

0.764

0.733

0.823

0.484

0.782

B0 + B1

0.962

0.957

0.957

0.571

0.471

0.483

0.613

0.091

0.485

DIP verification

AUC

0.727

0.724

0.724

0.604

0.617

0.586

0.602

0.487

0.600

B0 + B1

0.727

0.713

0.713

0.544

0.507

0.519

0.438

0.142

0.463

Constructing a cancer gene network

NPP

15

12

14

10

10

11

12

8

10

Predicting gene function

L0 + L1

33.07

32.45

32.45

4.83

8.89

6.42

7.18

0.16

1.89

  1. B0 + B1 indicates the average value of PPVs of B0- and B1-matched genes; NPP indicates the number of predicted metabolic pathways; L0 + L1 indicates the average number of L0- and L1-matched genes