Table 4 Detailed configuration of MNet.

From: Automatic diagnosis of neurological diseases using MEG signals with a deep neural network

Layer

Ksize

Stride

# of filters

Data shape

Input

   

(1, 160, 800)

Conv1

(160, 64)

(1, 2)

32

(32, 1, 369)

Conv2

(1, 16)

(1, 2)

64

(64, 1, 177)

Pool2

(1, 2)

(1, 2)

 

(64, 1, 89)

Swap axes

   

(1, 64, 89)

Conv3

(8, 8)

(1, 1)

32

(32, 57, 82)

Conv4

(8, 8)

(1, 1)

32

(32, 50, 75)

Pool4

(5, 3)

(5, 3)

 

(32, 10, 25)

Conv5

(1, 4)

(1, 1)

64

(64, 10, 22)

Conv6

(1, 4)

(1, 1)

64

(64, 10, 19)

Pool6

(1, 2)

(1, 2)

 

(64, 10, 10)

Conv7

(1, 2)

(1, 1)

128

(128, 10, 9)

Conv8

(1, 2)

(1, 1)

128

(128, 10, 8)

Pool8

(1, 2)

(1, 2)

 

(128, 10, 4)

Conv9

(1, 2)

(1, 1)

256

(256, 10, 3)

Conv10

(1, 2)

(1, 1)

256

(256, 10, 2)

Pool10

(1, 2)

(1, 2)

 

(256, 10, 1)

Fc11

1,024

(1,024)

Fc12

1,024

(1,024)

Input

   

(1, 160, 800)

RPS

   

(1, 160, 6)

Concat

   

(1,984)*

Fc13

# of classes

(# of classes)

  1. Ksize: kernel size; #: number; Conv: convolution; Pool: max pooling; Fc: fully connected; RPS: Relative power spectrum; Concat: concatenated.
  2. *Concatenation of the output of Fc12 and RPS.