Table 1 Table shows the calorimetric data from the steady-state images at different powers for the two thickness (\({l}_{z}=4.74\,mm\) and 5.02 mm).

From: Coexisting Ordered States, Local Equilibrium-like Domains, and Broken Ergodicity in a Non-turbulent Rayleigh-Bénard Convection at Steady-state

lz (mm)

#

Power (W)

Ttop (°C)

\({{\boldsymbol{T}}}_{{{\boldsymbol{P}}}_{{\boldsymbol{hot}}}}\) (°C)

\({{\boldsymbol{T}}}_{{{\boldsymbol{P}}}_{{\boldsymbol{cold}}}}\) (°C)

Tbottom (°C)

Tcond (°C)

Rayleigh Number Ra

4.74

1

23.8

39.4

——

——

53.2

46.8

831

2

42.2

48.4

61.5

54.8

71.7

61.7

1410

3

66

59.9

78.2

69.7

89.5

76.1

1790

4

95

70.9

100.9

91.1

115

96.4

2670

5

130

89.8

124.8

114.1

147

122.2

3464

5.02

1

10.5

30.3

——

——

37.9

34.5

535

2

23.8

38.1

43.1

39.7

53.4

46.9

1080

3

42.2

47.2

63.5

56.7

70.9

60.9

1670

4

66

58.8

84.4

73.6

91.8

77.7

2330

5

95

73.1

101.3

90.1

115

96.4

2960

  1. The numbers listed in the first column denote the specified points in the plots shown in Fig. 7. The top temperature (Ttop) is recorded by the thermal camera, bottom temperature (Tbottom) by the thermocouple T1, the hot and cold spot temperatures (\({T}_{{P}_{hot}}\) and \({T}_{{P}_{cold}}\)) are obtained by spatially averaging regions of interest (\({P}_{hot}\) and \({P}_{cold}\)) from the thermal images, conduction temperature (\({T}_{cond}\)) is calculated from Equation 3, and the Rayleigh Number \((Ra=\tfrac{g\beta {l}_{z}^{3}}{\nu \alpha }({T}_{bottom}-{T}_{top}))\) from the listed values in Table 2.