Table 3 Schematic of the proposed modified Inception V4 CNN. The input size is given in each row, and the output size is the input size of the next row. All convolutions were performed with sigmoid activation and 40% dropout.

From: Head and Neck Cancer Detection in Digitized Whole-Slide Histology Using Convolutional Neural Networks

Layer

Kernel size/Remarks

Input Size

Conv

3 × 3/‘valid’

101 × 101 × 3

Conv

3 × 3/‘valid’

98 × 98 × 32

Max Pool

2 × 2/stride=2 ‘valid’

96 × 96 × 64

Conv

3 × 3/stride=2 ‘valid’

48 × 48 × 64

4 x Inception-A Block

1 × 1 and 3 × 3/‘same’

23 × 23 × 80

Reduction-A Block

1 × 1 and 3 × 3/‘same’

23 × 23 × 384

7 × Inception Block

1 × 1, 1 × 7, 7 × 1, and 3 × 3/‘same’

11 × 11 × 1024

Reduction-B Block

1 × 1, 1 × 7, 7 × 1, and 3 × 3/‘same’

11 × 11×1024

3 × Inception-C Block

1 × 1, 1 × 3, 3 × 1, and 3 × 3/‘same’

5 × 5 × 1024

Avg. Pool

5 × 5/‘valid’

5 × 5 × 1536

Linear

Logits

1 × 1536

Softmax

Classifier

1 × 2