Table 2 Hybrid methods for the identification of influential spreaders in networks.
From: Systematic comparison between methods for the detection of influential spreaders in complex networks
Method | Features | Subcrit. | Critical | Supercrit. |
|---|---|---|---|---|
AD | \({c}_{AD}\) | 1.000 | 1.000 | 1.000 |
\(\langle {g}_{m}\rangle \) | 0.993 | 0.961 | 0.931 | |
\(\langle {r}_{m}\rangle \) | 0.755 | 0.548 | 0.119 | |
CD | \({c}_{CD}\) | 1.000 | 1.000 | 1.000 |
\(\langle {g}_{m}\rangle \) | 0.983 | 0.963 | 0.929 | |
\(\langle {r}_{m}\rangle \) | 0.730 | 0.525 | 0.100 | |
B | \({c}_{B}\) | 1.000 | 1.000 | 1.000 |
\(\langle {g}_{m}\rangle \) | 0.946 | 0.954 | 0.938 | |
\(\langle {r}_{m}\rangle \) | 0.590 | 0.483 | 0.110 | |
AD,B | \({c}_{AD}\) | 0.718 | 0.590 | 0.023 |
\({c}_{B}\) | −0.027 | 0.046 | 0.069 | |
\(\langle {g}_{m}\rangle \) | 0.987 | 0.964 | 0.936 | |
\(\langle {r}_{m}\rangle \) | 0.755 | 0.551 | 0.116 | |
AD,PR,LR | \({c}_{AD}\) | 1.189 | 1.044 | 0.115 |
\({c}_{PR}\) | −0.266 | 0.145 | 0.772 | |
\({c}_{LR}\) | −0.336 | −0.632 | −0.771 | |
\(\langle {g}_{m}\rangle \) | 0.991 | 0.980 | 0.971 | |
\(\langle {r}_{m}\rangle \) | 0.806 | 0.616 | 0.300 | |
PR,LR,CD | \({c}_{PR}\) | 0.006 | 0.386 | 0.803 |
\({c}_{LR}\) | −0.419 | −0.702 | −0.771 | |
\({c}_{CD}\) | 1.028 | 0.898 | 0.088 | |
\(\langle {g}_{m}\rangle \) | 0.985 | 0.979 | 0.971 | |
\(\langle {r}_{m}\rangle \) | 0.784 | 0.597 | 0.293 | |
AD,B,LR | \({c}_{AD}\) | 1.096 | 1.047 | 0.343 |
\({c}_{B}\) | −0.010 | 0.067 | 0.083 | |
\({c}_{LR}\) | −0.466 | −0.565 | −0.395 | |
\(\langle {g}_{m}\rangle \) | 0.993 | 0.976 | 0.952 | |
\(\langle {r}_{m}\rangle \) | 0.810 | 0.625 | 0.220 | |
PR,LR,EI | \({c}_{PR}\) | 0.304 | 0.583 | 0.740 |
\({c}_{LR}\) | 0.101 | −0.251 | −0.733 | |
\({c}_{EI}\) | 0.235 | 0.277 | 0.121 | |
\(\langle {g}_{m}\rangle \) | 0.973 | 0.964 | 0.970 | |
\(\langle {r}_{m}\rangle \) | 0.698 | 0.589 | 0.304 |