Table 13 Experimental average values and theoretical results of observables for the input state\(\tfrac{1}{\sqrt{2}}(|{\overrightarrow{{\rm{e}}}}_{0})+|{\overrightarrow{{\rm{e}}}}_{1}))\). The dates behind the experimental average values in the parentheses are standard deviations.

From: State-independent contextuality in classical light

Terms

Experimental value

Theoretical prediction

Terms

Experimental value

Theoretical prediction

Terms

Experimental value

Theoretical prediction

\(\overline{{A^{\prime} }_{1}}\)

0.953 (4)

1

\(\overline{{A^{\prime} }_{1}{A^{\prime} }_{6}}\)

0.408 (9)

0.5

\(\overline{{A^{\prime} }_{5}{A^{\prime} }_{6}}\)

0 (25)

0

\(\overline{{A^{\prime} }_{2}}\)

0.938 (1)

1

\(\overline{{A^{\prime} }_{1}{A^{\prime} }_{7}}\)

0.506 (1)

0.5

\(\overline{{A^{\prime} }_{5}{A^{\prime} }_{11}}\)

−0.499 (9)

−0.5

\(\overline{{A^{\prime} }_{3}}\)

−0.344 (5)

−0.333

\(\overline{{A^{\prime} }_{1}{A^{\prime} }_{9}}\)

−0.962 (2)

−1

\(\overline{{A^{\prime} }_{6}{A^{\prime} }_{11}}\)

−0.501 (21)

−0.5

\(\overline{{A^{\prime} }_{4}}\)

−0.375 (7)

−0.333

\(\overline{{A^{\prime} }_{2}{A^{\prime} }_{5}}\)

0.433 (14)

0.5

\(\overline{{A^{\prime} }_{7}{A^{\prime} }_{8}}\)

0.032 (7)

0

\(\overline{{A^{\prime} }_{5}}\)

0.501 (21)

0.5

\(\overline{{A^{\prime} }_{2}{A^{\prime} }_{8}}\)

0.468 (3)

0.5

\(\overline{{A^{\prime} }_{7}{A^{\prime} }_{12}}\)

−0.505 (5)

−0.5

\(\overline{{A^{\prime} }_{6}}\)

0.499 (9)

0.5

\(\overline{{A^{\prime} }_{2}{A^{\prime} }_{9}}\)

−0.968 (1)

−1

\(\overline{{A^{\prime} }_{8}{A^{\prime} }_{12}}\)

−0.527 (10)

−0.5

\(\overline{{A^{\prime} }_{7}}\)

0.527 (10)

0.5

\(\overline{{A^{\prime} }_{3}{A^{\prime} }_{5}}\)

−0.799 (3)

−0.833

\(\overline{{A^{\prime} }_{9}{A^{\prime} }_{10}}\)

−0.991 (0)

−1

\(\overline{{A^{\prime} }_{8}}\)

0.505 (5)

0.5

\(\overline{{A^{\prime} }_{3}{A^{\prime} }_{7}}\)

−0.826 (4)

−0.833

\(\overline{{A^{\prime} }_{9}{A^{\prime} }_{13}}\)

−0.917 (2)

−1

\(\overline{{A^{\prime} }_{9}}\)

−0.907 (2)

−1

\(\overline{{A^{\prime} }_{3}{A^{\prime} }_{10}}\)

−0.334 (12)

−0.333

\(\overline{{A^{\prime} }_{10}{A^{\prime} }_{13}}\)

0.907 (2)

1

\(\overline{{A^{\prime} }_{10}}\)

0.916 (2)

1

\(\overline{{A^{\prime} }_{4}{A^{\prime} }_{6}}\)

−0.823 (14)

−0.833

\(\overline{{A^{\prime} }_{11}{A^{\prime} }_{12}}\)

−0.990 (0)

−1

\(\overline{{A^{\prime} }_{11}}\)

0 (9)

0

\(\overline{{A^{\prime} }_{4}{A^{\prime} }_{8}}\)

−0.836 (11)

−0.833

\(\overline{{A^{\prime} }_{11}{A^{\prime} }_{13}}\)

−0.010 (9)

0

\(\overline{{A^{\prime} }_{12}}\)

0.010 (9)

0

\(\overline{{A^{\prime} }_{4}{A^{\prime} }_{10}}\)

−0.334 (11)

−0.333

\(\overline{{A^{\prime} }_{12}{A^{\prime} }_{13}}\)

0 (9)

0

\(\overline{{A^{\prime} }_{13}}\)

0.990 (0)

1

      

Original Yu-Oh

\(\mathop{\sum }\limits_{i=1}^{13}\overline{{A^{\prime} }_{i}}-\frac{1}{4}\mathop{\sum }\limits_{i=1}^{13}\mathop{\sum }\limits_{j=1,j\ne i}^{13}{\Gamma }_{i,j}\overline{{A^{\prime} }_{i}{A^{\prime} }_{j}}=8.246\pm 86\)