Table 14 Experimental average values and theoretical results of observables for the input state \(\tfrac{1}{\sqrt{2}}(|{\overrightarrow{{\rm{e}}}}_{0})+|{\overrightarrow{{\rm{e}}}}_{2}))\). The dates behind the experimental average values in the parentheses are standard deviations.

From: State-independent contextuality in classical light

Terms

Experimental value

Theoretical prediction

Terms

Experimental value

Theoretical prediction

Terms

Experimental value

Theoretical prediction

\(\overline{{A^{\prime} }_{1}}\)

0.939 (1)

1

\(\overline{{A^{\prime} }_{1}{A^{\prime} }_{6}}\)

0.475 (7)

0.5

\(\overline{{A^{\prime} }_{5}{A^{\prime} }_{6}}\)

−0.008 (3)

0

\(\overline{{A^{\prime} }_{2}}\)

−0.343 (14)

−0.333

\(\overline{{A^{\prime} }_{1}{A^{\prime} }_{7}}\)

−0.953 (1)

−1

\(\overline{{A^{\prime} }_{5}{A^{\prime} }_{11}}\)

−0.498 (1)

−0.5

\(\overline{{A^{\prime} }_{3}}\)

0.951 (6)

1

\(\overline{{A^{\prime} }_{1}{A^{\prime} }_{9}}\)

0.483 (11)

0.5

\(\overline{{A^{\prime} }_{6}{A^{\prime} }_{11}}\)

−0.495 (5)

−0.5

\(\overline{{A^{\prime} }_{4}}\)

−0.330 (24)

−0.333

\(\overline{{A^{\prime} }_{2}{A^{\prime} }_{5}}\)

−0.823 (4)

−0.833

\(\overline{{A^{\prime} }_{7}{A^{\prime} }_{8}}\)

−0.997 (0)

−1

\(\overline{{A^{\prime} }_{5}}\)

0.495 (5)

0.5

\(\overline{{A^{\prime} }_{2}{A^{\prime} }_{8}}\)

−0.339 (5)

−0.333

\(\overline{{A^{\prime} }_{7}{A^{\prime} }_{12}}\)

−0.892 (4)

−1

\(\overline{{A^{\prime} }_{6}}\)

0.498 (1)

0.5

\(\overline{{A^{\prime} }_{2}{A^{\prime} }_{9}}\)

−0.826 (5)

−0.833

\(\overline{{A^{\prime} }_{8}{A^{\prime} }_{12}}\)

0.889 (4)

1

\(\overline{{A^{\prime} }_{7}}\)

−0.889 (4)

−1

\(\overline{{A^{\prime} }_{3}{A^{\prime} }_{5}}\)

0.499 (19)

0.5

\(\overline{{A^{\prime} }_{9}{A^{\prime} }_{10}}\)

−0.004 (2)

0

\(\overline{{A^{\prime} }_{8}}\)

0.892 (4)

1

\(\overline{{A^{\prime} }_{3}{A^{\prime} }_{7}}\)

−0.948 (5)

−1

\(\overline{{A^{\prime} }_{9}{A^{\prime} }_{13}}\)

−0.490 (3)

−0.5

\(\overline{{A^{\prime} }_{9}}\)

0.505 (3)

0.5

\(\overline{{A^{\prime} }_{3}{A^{\prime} }_{10}}\)

0.453 (6)

0.5

\(\overline{{A^{\prime} }_{10}{A^{\prime} }_{13}}\)

−0.505 (3)

−0.5

\(\overline{{A^{\prime} }_{10}}\)

0.490 (3)

0.5

\(\overline{{A^{\prime} }_{4}{A^{\prime} }_{6}}\)

−0.822 (6)

−0.833

\(\overline{{A^{\prime} }_{11}{A^{\prime} }_{12}}\)

−0.038 (3)

0

\(\overline{{A^{\prime} }_{11}}\)

0.017 (4)

0

\(\overline{{A^{\prime} }_{4}{A^{\prime} }_{8}}\)

−0.334 (1)

−0.333

\(\overline{{A^{\prime} }_{11}{A^{\prime} }_{13}}\)

−0.945 (0)

−1

\(\overline{{A^{\prime} }_{12}}\)

0.945 (0)

1

\(\overline{{A^{\prime} }_{4}{A^{\prime} }_{10}}\)

−0.827 (8)

−0.833

\(\overline{{A^{\prime} }_{12}{A^{\prime} }_{13}}\)

−0.017 (4)

0

\(\overline{{A^{\prime} }_{13}}\)

0.038 (3)

0

      

Original Yu-Oh

\(\mathop{\sum }\limits_{i=1}^{13}\overline{{A^{\prime} }_{i}}-\frac{1}{4}\mathop{\sum }\limits_{i=1}^{13}\mathop{\sum }\limits_{j=1,j\ne i}^{13}{\Gamma }_{i,j}\overline{{A^{\prime} }_{i}{A^{\prime} }_{j}}=8.189\pm 68\)