Table 1 Comparing fitting models to the prokaryote abundance distribution.

From: Scaling of species distribution explains the vast potential marine prokaryote diversity

 

ΔAIC PL

ΔAIC TPL

ΔAIC LN

ΔAIC Weibull

α

standard error (α)

β

λ

Upper ocean

0.47

0

0.74

0.77

1.57

0.09

1.34

0.000019

Deep ocean

0.03

0

2.01

15

0.89

0.02

0.73

0.000002

Mesocosm C1

23

0

8.44

5.84

0.52

0.02

0.41

0.000106

Mesocosm C2

0

2

2.01

3.00

0.52

0.31

0.52

0

Mesocosm C3

19

0

13

11

0.53

0.02

0.43

0.000088

Mesocosm C4

26

0

8.36

5.57

0.54

0.02

0.42

0.000119

Mesocosm C5

38

0

13

9.49

0.57

0.02

0.38

0.000178

Mesocosm C6

18

0

13

11

0.52

0.02

0.44

0.000080

  1. The delta Akaike Information Criterion (ΔAIC) indicates the most likely fit (value 0 in bold) and the difference to the most likely fit. For the six cases reported, the most likely fit is a distribution with a power-law decay (either pure or truncated). The parameters of a power law distribution P(x) ~x −1− α are the scaling exponent α; for the truncated power-law P(x) ~ x −1− β exp(−λx), are the scaling exponent β, and the characteristic abundance λ (λ = 0, for a pure power-law). ΔAIC PL: delta Akaike Information Criterion for power-law distribution fit; ΔAIC TPL: delta Akaike Information Criterion for truncated power-law distribution fit; ΔAIC LN: delta Akaike Information Criterion for log-normal distribution fit; ΔAIC W: delta Akaike Information Criterion for Weibull distribution fit. The standard error of the power-law scaling exponent (α) is also reported. For the upper ocean, the prokaryote abundance distribution shows a double power-law regime. A Maximum Likelihood Estimation for a double power-law model gives P(x) ~ x −1− δ, with exponent δ = 1.54 for x < 2,313; and P(x) ~x −1− α, with exponent α = 0.36 for x ≥ 2313 (see Materials and Methods).