Table 1 Confusion matrix for testing dataset for different SOC cut-off limit.

From: Internal short circuit detection in Li-ion batteries using supervised machine learning

   

NiN = 100%

   

NiN = 97.97%

SOC = 5%

Faulty

Healthy

FiF = 98.45%

SOC = 15%

Faulty

Healthy

FiF = 97.67%

Faulty

TN = 127

FP = 2

False Alarm = 0.0%

Faulty

TN = 126

FP = 3

False Alarm = 2.03%

Healthy

FN = 0

TP = 148

Miss-detection = 1.55

Healthy

FN = 3

TP = 145

Miss-detection = 2.33%

   

NiN = 97.97%

   

NiN = 93.92%

SOC = 30%

Faulty

Healthy

FiF = 97.67%

SOC = 50%

Faulty

Healthy

FiF = 97.67%

Faulty

TN = 126

FP = 3

False Alarm = 2.03%

Faulty

TN = 126

FP = 3

False Alarm = 6.08%

Healthy

FN = 3

TP = 145

Miss-detection = 2.33

Healthy

FN = 9

TP = 139

Miss-detection = 2.33%