Table 2 Team scores for artefact class detection and out-of-sample generalization.
From: An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy
Team name | Detection | Generalization | ||||
---|---|---|---|---|---|---|
mAPd | IoUd | scored | mAPg | IoUg | devg | |
yangsuhui | 0.3235 | 0.4172 | 0.361 | 0.3187 | 0.0734 | 0.1018 |
ZhangPY | 0.3117 | 0.4051 | 0.3491 | 0.3518 | 0.0889 | 0.0984 |
Keisecker | 0.3087 | 0.3997 | 0.3451 | 0.2848 | 0.3902 | 0.0696 |
VegZhang | 0.3371 | 0.3517 | 0.3429 | 0.3991 | 0.1783 | 0.101 |
YWa | 0.3842 | 0.2368 | 0.3252 | 0.3746 | 0.1481 | 0.0424 |
michaelqiyao | 0.3842 | 0.2368 | 0.3252 | 0.3746 | 0.1780 | 0.0742 |
ilkayoksuz | 0.2719 | 0.3456 | 0.3014 | 0.2974 | 0.0688 | 0.0859 |
swtnb | 0.2901 | 0.318 | 0.3013 | 0.2914 | 0.2547 | 0.0854 |
Witt | 0.3148 | 0.2621 | 0.2937 | 0.2897 | 0.1854 | 0.1003 |
akhanss | 0.2581 | 0.333 | 0.288 | 0.2187 | 0.2262 | 0.0770 |
XiaokangWang | 0.2621 | 0.3205 | 0.2855 | 0.2515 | 0.2058 | 0.0728 |
a545306097 | 0.2547 | 0.2719 | 0.2616 | 0.1122 | 0.2244 | 0.1298 |
nqt52798669 | 0.3068 | 0.1222 | 0.233 | 0.3154 | 0.0871 | 0.0515 |
ShufanYang | 0.2208 | 0.1955 | 0.2107 | 0.1931 | 0.1365 | 0.0478 |
xiaohong1 | 0.2416 | 0.3482 | 0.2842 | 0.1764 | 0.2671 | 0.0555 |
Faster R-CNN (baseline) | 0.2226 | 0.2751 | 0.2436 | 0.2172 | 0.1647 | 0.0893 |
Retinanet (baseline) | 0.2135 | 0.2270 | 0.2189 | 0.2499 | 0.1679 | 0.0665 |
Merged (super baseline) | 0.3331 | 0.3793 | 0.3516 | 0.3433 | 0.2610 | 0.0610 |