Table 2 The prediction performance of the Met-predictor based on 5-fold cross-validation on the training set.
From: Two-Level Protein Methylation Prediction using structure model-based features
Residue | Methods | Window Size | MCC | ACC | SEN | SPE | PRE | CPRE | AUC | PRAUC |
---|---|---|---|---|---|---|---|---|---|---|
K | Met-predictor(seq) | 17 | 0.261 | 0.630 | 0.655 | 0.606 | 0.624 | 0.061 | 0.679 | 0.669 |
MONO | 23 | 0.206 | 0.674 | 0.927 | 0.215 | 0.682 | 0.682 | 0.674 | 0.789 | |
DI | 17 | 0.384 | 0.692 | 0.674 | 0.709 | 0.699 | 0.421 | 0.752 | 0.746 | |
TRI | 21 | 0.455 | 0.726 | 0.769 | 0.684 | 0.709 | 0.320 | 0.779 | 0.746 | |
Met-predictor(seq + str) | 17 | 0.286 | 0.643 | 0.662 | 0.624 | 0.638 | 0.064 | 0.692 | 0.685 | |
MONO | 23 | 0.207 | 0.674 | 0.925 | 0.219 | 0.683 | 0.683 | 0.676 | 0.792 | |
DI | 15 | 0.390 | 0.695 | 0.686 | 0.703 | 0.698 | 0.420 | 0.756 | 0.724 | |
TRI | 23 | 0.359 | 0.679 | 0.692 | 0.667 | 0.675 | 0.287 | 0.754 | 0.749 | |
R | Met-predictor(seq) | 17 | 0.371 | 0.685 | 0.654 | 0.716 | 0.697 | 0.089 | 0.749 | 0.759 |
MONO | 17 | 0.148 | 0.703 | 0.992 | 0.056 | 0.701 | 0.701 | 0.606 | 0.761 | |
DI | 19 | 0.377 | 0.721 | 0.409 | 0.909 | 0.729 | 0.729 | 0.745 | 0.665 | |
Met-predictor(seq + str) | 17 | 0.380 | 0.689 | 0.642 | 0.737 | 0.709 | 0.094 | 0.752 | 0.763 | |
MONO | 17 | 0.184 | 0.709 | 0.981 | 0.101 | 0.709 | 0.709 | 0.636 | 0.774 | |
DI | 21 | 0.302 | 0.692 | 0.326 | 0.912 | 0.690 | 0.690 | 0.712 | 0.607 |