Table 2 The prediction performance of the Met-predictor based on 5-fold cross-validation on the training set.

From: Two-Level Protein Methylation Prediction using structure model-based features

Residue

Methods

Window

Size

MCC

ACC

SEN

SPE

PRE

CPRE

AUC

PRAUC

K

Met-predictor(seq)

17

0.261

0.630

0.655

0.606

0.624

0.061

0.679

0.669

     MONO

23

0.206

0.674

0.927

0.215

0.682

0.682

0.674

0.789

     DI

17

0.384

0.692

0.674

0.709

0.699

0.421

0.752

0.746

     TRI

21

0.455

0.726

0.769

0.684

0.709

0.320

0.779

0.746

Met-predictor(seq + str)

17

0.286

0.643

0.662

0.624

0.638

0.064

0.692

0.685

     MONO

23

0.207

0.674

0.925

0.219

0.683

0.683

0.676

0.792

     DI

15

0.390

0.695

0.686

0.703

0.698

0.420

0.756

0.724

     TRI

23

0.359

0.679

0.692

0.667

0.675

0.287

0.754

0.749

R

Met-predictor(seq)

17

0.371

0.685

0.654

0.716

0.697

0.089

0.749

0.759

     MONO

17

0.148

0.703

0.992

0.056

0.701

0.701

0.606

0.761

     DI

19

0.377

0.721

0.409

0.909

0.729

0.729

0.745

0.665

Met-predictor(seq + str)

17

0.380

0.689

0.642

0.737

0.709

0.094

0.752

0.763

     MONO

17

0.184

0.709

0.981

0.101

0.709

0.709

0.636

0.774

     DI

21

0.302

0.692

0.326

0.912

0.690

0.690

0.712

0.607

  1. Two versions of Met-predictor are included here: Met-predictor(seq), where only sequence-based features are used to build models, and Met-predictor(seq + str), which uses not only sequence-based features, but also the novel structure model-based features to build models. The lysine residue is represented by “K” while the arginine corresponds to “R”. The definitions of measures MCC, ACC, SEN, SPE, PRE, CPRE, AUC and PRAUC are shown in “Performance Evaluation” section and Eqs. (1) to (6).