Table 3 Performance comparison of the Met-predictor with other existing methods on the independent test set I.
From: Two-Level Protein Methylation Prediction using structure model-based features
Residue | Methods | MCC | ACC | SEN | SPE | PRE | CPRE | AUC | PRAUC |
---|---|---|---|---|---|---|---|---|---|
K | MEMO | 0.104 | 0.528 | 0.106 | 0.950 | 0.679 | 0.075 | — | — |
MASA | 0.164 | 0.531 | 0.067 | 0.994 | 0.923 | 0.301 | — | — | |
PLMLA | 0.061 | 0.531 | 0.517 | 0.544 | 0.531 | 0.042 | — | — | |
PmeS | 0.209 | 0.542 | 0.083 | 1.000 | 1.000 | 1.000 | — | — | |
MethK | 0.101 | 0.558 | 0.019 | 1.000 | 1.000 | 1.000 | — | — | |
iLM_2L | 0.075 | 0.531 | 0.239 | 0.822 | 0.573 | 0.049 | — | — | |
MONO | 0.039 | 0.450 | 0.218 | 0.814 | 0.649 | 0.648 | — | — | |
DI | 0.151 | 0.522 | 0.044 | 1.000 | 1.000 | 1.000 | — | — | |
TRI | 0.291 | 0.578 | 0.156 | 1.000 | 1.000 | 1.000 | — | — | |
GPS-MSP | 0.130 | 0.517 | 0.033 | 1.000 | 1.000 | 1.000 | — | — | |
MONO | −0.094 | 0.383 | 0.000 | 0.986 | 0.000 | 0.000 | — | — | |
DI | 0.106 | 0.511 | 0.022 | 1.000 | 1.000 | 1.000 | — | — | |
TRI | Nan | 0.500 | 0.000 | 1.000 | Nan | Nan | — | — | |
Met-predictor(seq) | 0.195 | 0.597 | 0.633 | 0.561 | 0.591 | 0.053 | 0.611 | 0.606 | |
MONO | 0.126 | 0.617 | 0.845 | 0.257 | 0.641 | 0.641 | 0.594 | 0.705 | |
DI | 0.223 | 0.611 | 0.578 | 0.644 | 0.619 | 0.351 | 0.557 | 0.553 | |
TRI | 0.194 | 0.594 | 0.469 | 0.719 | 0.625 | 0.265 | 0.611 | 0.549 | |
Met-predictor(seq + str) | 0.261 | 0.631 | 0.644 | 0.617 | 0.627 | 0.061 | 0.655 | 0.647 | |
MONO | 0.136 | 0.622 | 0.864 | 0.243 | 0.642 | 0.642 | 0.587 | 0.699 | |
DI | 0.291 | 0.644 | 0.578 | 0.711 | 0.667 | 0.400 | 0.660 | 0.601 | |
TRI | 0.221 | 0.609 | 0.531 | 0.688 | 0.630 | 0.269 | 0.664 | 0.585 | |
R | MEMO | 0.282 | 0.624 | 0.386 | 0.862 | 0.736 | 0.104 | — | — |
MASA | 0.316 | 0.622 | 0.305 | 0.939 | 0.833 | 0.172 | — | — | |
PmeS | 0.176 | 0.587 | 0.498 | 0.675 | 0.605 | 0.060 | — | — | |
GPS-MSP | 0.192 | 0.550 | 0.122 | 0.977 | 0.844 | 0.181 | — | — | |
MONO | 0.113 | 0.293 | 0.048 | 1.000 | 1.000 | 1.000 | — | — | |
DI | 0.024 | 0.505 | 0.049 | 0.961 | 0.556 | 0.384 | — | — | |
Met-predictor(seq) | 0.352 | 0.675 | 0.637 | 0.714 | 0.690 | 0.085 | 0.723 | 0.731 | |
MONO | 0.097 | 0.746 | 1.000 | 0.013 | 0.745 | 0.745 | 0.541 | 0.755 | |
DI | 0.073 | 0.633 | 0.223 | 0.837 | 0.404 | 0.404 | 0.583 | 0.579 | |
Met-predictor(seq + str) | 0.355 | 0.677 | 0.630 | 0.723 | 0.695 | 0.086 | 0.734 | 0.746 | |
MONO | 0.126 | 0.746 | 0.978 | 0.075 | 0.753 | 0.753 | 0.574 | 0.778 | |
DI | 0.122 | 0.662 | 0.194 | 0.894 | 0.476 | 0.475 | 0.628 | 0.617 |