Table 3 Performance comparison of the Met-predictor with other existing methods on the independent test set I.

From: Two-Level Protein Methylation Prediction using structure model-based features

Residue

Methods

MCC

ACC

SEN

SPE

PRE

CPRE

AUC

PRAUC

K

MEMO

0.104

0.528

0.106

0.950

0.679

0.075

MASA

0.164

0.531

0.067

0.994

0.923

0.301

PLMLA

0.061

0.531

0.517

0.544

0.531

0.042

PmeS

0.209

0.542

0.083

1.000

1.000

1.000

MethK

0.101

0.558

0.019

1.000

1.000

1.000

iLM_2L

0.075

0.531

0.239

0.822

0.573

0.049

     MONO

0.039

0.450

0.218

0.814

0.649

0.648

     DI

0.151

0.522

0.044

1.000

1.000

1.000

     TRI

0.291

0.578

0.156

1.000

1.000

1.000

GPS-MSP

0.130

0.517

0.033

1.000

1.000

1.000

     MONO

−0.094

0.383

0.000

0.986

0.000

0.000

     DI

0.106

0.511

0.022

1.000

1.000

1.000

     TRI

Nan

0.500

0.000

1.000

Nan

Nan

Met-predictor(seq)

0.195

0.597

0.633

0.561

0.591

0.053

0.611

0.606

     MONO

0.126

0.617

0.845

0.257

0.641

0.641

0.594

0.705

     DI

0.223

0.611

0.578

0.644

0.619

0.351

0.557

0.553

     TRI

0.194

0.594

0.469

0.719

0.625

0.265

0.611

0.549

Met-predictor(seq + str)

0.261

0.631

0.644

0.617

0.627

0.061

0.655

0.647

     MONO

0.136

0.622

0.864

0.243

0.642

0.642

0.587

0.699

     DI

0.291

0.644

0.578

0.711

0.667

0.400

0.660

0.601

     TRI

0.221

0.609

0.531

0.688

0.630

0.269

0.664

0.585

R

MEMO

0.282

0.624

0.386

0.862

0.736

0.104

MASA

0.316

0.622

0.305

0.939

0.833

0.172

PmeS

0.176

0.587

0.498

0.675

0.605

0.060

GPS-MSP

0.192

0.550

0.122

0.977

0.844

0.181

     MONO

0.113

0.293

0.048

1.000

1.000

1.000

     DI

0.024

0.505

0.049

0.961

0.556

0.384

Met-predictor(seq)

0.352

0.675

0.637

0.714

0.690

0.085

0.723

0.731

     MONO

0.097

0.746

1.000

0.013

0.745

0.745

0.541

0.755

     DI

0.073

0.633

0.223

0.837

0.404

0.404

0.583

0.579

Met-predictor(seq + str)

0.355

0.677

0.630

0.723

0.695

0.086

0.734

0.746

     MONO

0.126

0.746

0.978

0.075

0.753

0.753

0.574

0.778

     DI

0.122

0.662

0.194

0.894

0.476

0.475

0.628

0.617

  1. Two versions of Met-predictor are included here: Met-predictor(seq), where only sequence-based features are used to build models, and Met-predictor(seq + str), which uses not only sequence-based features, but also the novel structure model-based features to build models. The lysine residue is represented by “K” while the arginine corresponds to “R”. The definitions of measures MCC, ACC, SEN, SPE, PRE, CPRE, AUC and PRAUC are shown in “Performance Evaluation” section and Eqs. (1) to (6). The “Nan” for the MCC, PRE and CPRE is because both TP and FP are zero, resulting in the measure divided by zero. There are no AUC and PRAUC values for other methods because other tools or servers do not output the probabilities for their predicted sites or only gives the probabilities of positive sites they predicted. Note that the probabilities of both positive and negative samples are needed to calculate the AUC and PRAUC values.