Table 7 The optimal regression model for the ANLI time series prediction of each provincial capital.
City | Regression model | R2 |
---|---|---|
Changchun | ANLI = −0.01829Y2 + 74.13Y − 75090 | 0.7997 |
Changsha | ANLI = 0.06177Y2 − 247.2Y + 247400 | 0.8891 |
Chengdu | ANLI = 0.06861Y2 − 274.4Y + 274300 | 0.8672 |
Chongqing | ANLI = 0.01298Y2 − 51.95Y + 51970 | 0.9354 |
Guiyang | ANLI = 0.05905Y2 − 236.6Y + 236900 | 0.8707 |
Harbin | ANLI = −0.0007979Y2 + 3.633Y − 4071 | 0.7085 |
Hefei | ANLI = 0.01278Y2 − 50.19Y + 49270 | 0.7457 |
Hohhot | ANLI = 0.0321Y2 − 128.3Y + 128300 | 0.8707 |
Kunming | ANLI = 0.04935Y2 − 197.5Y + 197700 | 0.8766 |
Lanzhou | ANLI = 0.0353Y2 − 141.3Y + 141400 | 0.8032 |
Nanchang | ANLI = 0.0296Y2 − 118.3Y + 118200 | 0.7849 |
Taiyuan | ANLI = 0.04523Y2 − 181.1Y + 181200 | 0.6653 |
Urumqi | ANLI = 0.06364Y2 − 254.9Y + 255300 | 0.8960 |
Wuhan | ANLI = 0.1048Y2 − 419.3Y + 419600 | 0.8644 |
Xi’an | ANLI = 0.051Y2 − 203.7Y + 203500 | 0.8800 |
Xining | ANLI = 0.01513Y2 − 60.31Y + 60100 | 0.8229 |
Yinchuan | ANLI = 24.81Y2 − 99330Y + 99440000 | 0.9650 |
Zhengzhou | ANLI = 0.03563Y2 − 141.3Y + 140100 | 0.9074 |